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CHAPTER 1 

INTRODUCTION 

 

 Since their commercial introduction in 1996, genetically engineered (GE) corn and 

soybean varieties have become the primary type of seed planted by U.S. farmers. In every year 

since 2007, the share of land planted to GE corn and soybean varieties has exceeded 75% and 

90%, respectively. Despite such popularity among farmers, GE crops have been surrounded by 

controversy. Concerns raised have ranged from the safety of GE crops for consumption to the 

market power possessed by the large firms that develop and market GE crops. Amidst these 

concerns a large body of research has arisen that attempts to ascertain the many consequences 

of GE crops. Unsurprisingly, this research has shown that there are both benefits and costs 

associated with their adoption.  

 This dissertation contributes to the literature in the form of three essays that explore 

how the widespread adoption of GE varieties has impacted three different facets of the 

agricultural landscape. The first two essays investigate the impact of GE variety adoption on 

two related farming practices: conservation tillage adoption and pesticide use. These two 

practices have not only served an instrumental role in farming, but they also have significant 

implications for the environment. Conservation tillage has long been advocated because it 

reduces soil erosion and chemical runoff, and pesticide use has implications for human health 

and biodiversity.  The third essay focuses on the monetary benefits for the farmers that adopt 

GE varieties. Although GE varieties have been adopted quickly and loyally, consolidation and 

sharply rising prices in the corn and soybean seed markets have prompted many to question 

whether farmers have continued to benefit. We investigate these concerns by estimating 

farmers’ willingness to pay for GE varieties in the U.S. corn and soybean seed markets. In what 

follows, I discuss each of these three essays in detail.  

 The adoption of conservation tillage in soybean farming has been historically limited by 

the inability of conventional herbicide programs to fully substitute for tillage as a means of 

weed control. Glyphosate tolerant soybeans, introduced in 1996, potentially solved this problem 

by allowing for more effective post-emergent weed control. In the first essay, “Testing for 
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Complementarity: Glyphosate Tolerant Soybeans and Conservation Tillage”, we explore this 

possibility by developing a discrete choice model of joint technology adoption in which farmers 

choose the most profitable option from a set of four mutually exclusive soybean-tillage systems: 

(i) conventional soybeans and intensive tillage, (ii) glyphosate tolerant soybeans and intensive 

tillage, (iii) conventional soybeans and conservation tillage, (iv) glyphosate tolerant soybeans 

and conservation tillage. Within this framework we develop a test, based on the theory of 

supermodularity, for whether glyphosate tolerant soybeans and conservation tillage are 

complementary practices. 

 This essay contributes to the literature in two significant ways. First, the model is 

estimated with a large, unbalanced panel of 82,056 soybean and tillage choices over the 1998-

2011 period. This is in contrast to previous analyses which have had to rely on either state-level 

data, or individual data that spanned a single year. Second, the developed model possesses two 

properties essential for the identification of complementarity between glyphosate tolerant 

soybeans and conservation tillage. The first property is that the decision problem for a given 

farmer is framed as consisting of a single choice between all four possible soybean-tillage 

systems. Previous work has modeled farmers as making two distinct, albeit possibly correlated, 

choices. The limitation of this approach is that complementarity is either ruled out from the 

beginning (as is the case in the bivariate probit model, e.g.), or poorly characterized. The second 

property that the developed model possesses is that it distinguishes between the correlation 

induced by unobserved and correlated tastes versus the correlation that results from genuine 

structural complementarity. Existing work ignores this distinction, and thus potentially 

incorrectly concludes in favor of (or against) complementarity. 

 We find that glyphosate tolerant soybeans and conservation tillage are complementary 

practices, and this finding is robust to a variety of alternative specifications. In the baseline 

specification, the marginal benefit of the complementarity effect is about $1.69 per acre. In 

addition, the results indicate conservation tillage is more likely to be adopted on large farms, 

highly erodible land, in drought-like conditions, and when fuel prices are high. The estimates 

are also used to simulate a counterfactual in which glyphosate tolerant soybeans were not 

available as a choice. The simulation indicates that the availability of glyphosate tolerant 
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soybeans led to an increase in the adoption of conservation tillage and no-tillage by about 10% 

and 20%, respectively.  

 In the second essay, titled “Genetically Engineered Crops and Pesticide Use in U.S. 

Maize and Soybeans”, we examine the relationship between the adoption of GE corn and 

soybeans and pesticide use. Since their introduction, there has been little doubt that GE varieties 

have impacted which types and how much pesticide farmers use, but the extent of those 

impacts as well as their environmental implications remain unclear. In the case of insecticides, 

the existing literature has attributed significant reductions to the adoption of insect resistant 

varieties. For herbicides, however, there is less agreement. This is in part owed to the more 

complex relationship between herbicide resistant crops and herbicide use. Whereas with insect 

resistant varieties there is a clear substitution effect, with herbicide tolerant crops farmers 

predictably increase the herbicide to which the crop is tolerant, but decrease the use of other 

herbicides. Perhaps more importantly, there has simply been a lack of good data with which to 

analyze these questions. Most studies have used aggregate data to compare average pesticide 

usage decisions between GE and non-GE adopters, and in many cases these studies have 

resorted to imputing non-GE adopter herbicide use by using recommended conventional 

herbicide programs that would achieve a level of weed control on par with GE variety herbicide 

programs. The problem with this approach is that the usage rates associated with these 

recommended programs significantly exceed observed usage rates prior to the GE era. 

 We estimate the impact of GE varieties on pesticide use with data on the seed and 

pesticide use decisions of 86,736 plots in soybeans and 134,264 plots in maize over the 1998-2011 

period. We control for potentially important omitted variables by including grower-specific 

fixed effects, time fixed effects, and CRD-specific time trends. We find that glyphosate tolerant 

soybean and corn adopters used about 28% (0.30 kg/ha) more and 1.2% (0.03 kg/ha) less than 

non-adopters, respectively. Insect resistant corn adopters used about 11.2% (0.013) less 

insecticide than non-adopters. When weighted by an index called the environmental impact 

quotient these results are modified to 0%, -9.8% and -10.4%, respectively.  Perhaps most 

interestingly, we find that the relationship between GE and non-GE adopters changed 

significantly over time. In particular, glyphosate tolerant corn and soybean adopters gradually 
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used more herbicide relative to non-adopters over time. We show that this trend is in part 

attributable to the emergence of glyphosate weed resistance.   

 The final essay, “A Discrete Choice Model of Seed Demand: Genetically Engineered 

Varieties in U.S. Corn and Soybeans”, develops a discrete choice model of seed demand and 

applies it to a dataset of corn and soybean seed purchases from 1996-2011. We then use the 

model to retrieve farmers’ willingness-to-pay (WTP) for GE varieties. Importantly, we permit 

the WTP estimates to structurally vary over the three sub-periods – 1996-2000, 2001-2006, and 

2007-2011. These sub-periods correspond to the expiration of Monsanto’s glyphosate patent in 

2000 and the sharp increase in corn and soybean output prices that began in 2007. There is 

strong reason to expect that both events altered the relative profitability of GE varieties. In 

particular, the expiration of Monsanto’s glyphosate patent was followed by a decline in the 

price glyphosate, one of the main inputs associate glyphosate tolerant corn and soybean 

varieties; and the increase in corn and soybean in output prices in 2007 raised the relative 

profitability of higher yielding, GE varieties. It is also worth noting that by allowing the 

estimates to vary over time, other dynamic factors that potentially affected farmers’ WTP are 

captured. Two examples include learning effects and the gradual release of more and better 

yielding GE varieties.  

 We find that corn and soybean growers were almost always willing to pay a premium 

for GE varieties, with the extent of that willingness increasing significantly over time. The 

results also show that the benefits associated with varieties that contain multiple GE traits are 

sub-additive (i.e., the premium a grower is willing to pay for two GE traits is less than the sum 

of the premiums he is willing to pay for each of the GE traits in isolation), a finding consistent 

with previous work in this area. Finally, a comparison of the WTP estimates to the actual 

premiums charged by seed firms suggests that farmers gained the most from GE varieties in the 

final sub-period, also the sub-period during which seed prices rose the most. 
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CHAPTER 2 

TESTING FOR COMPLEMENTARITY: GLYPHOSATE TOLERANT SOYBEANS AND 

CONSERVATION TILLAGE 

 

Edward D. Perry, GianCarlo Moschini, and David. A Hennessy 

 

Abstract 

 

Many decisions in agriculture are made over combinations of inputs and/or practices 

that may form a technology system linked through complementarity. The presence of 

complementarity among producer decisions can have far-reaching implications for market 

outcomes and for the effectiveness of policies intended to influence them. Identifying 

complementarity relations, however, is made difficult by the presence of unobserved 

heterogeneity. Drawing on recent methodological advances, in this paper we develop a test for 

complementarity between glyphosate tolerant soybeans and conservation tillage that overcomes 

certain limitations of previous studies. Specifically, we develop a structural discrete choice 

framework of joint soybean-tillage adoption that explicitly models both complementarity and 

the correlation induced by unobserved heterogeneity. The model is estimated with a large 

unbalanced panel of farm-level choices spanning the 1998–2011 period. We find that glyphosate 

tolerant soybeans and conservation tillage are complementary practices. In addition, our 

estimation shows that farm operation scale promotes the adoption of both conservation tillage 

and glyphosate tolerant seed, and that all of higher fuel prices, more droughty conditions and 

soil erodibility increase use of conservation tillage. We apply our results to simulate annual 

adoption rates for both conservation tillage and no-tillage in a scenario without glyphosate 

tolerant soybeans available as a choice. We find that the adoption of conservation tillage and 

no-tillage have been about 10% and 20% higher, respectively, due to the advent of glyphosate 

tolerant soybeans.  
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Introduction 

 

Decision variables in many real-world problems are often best viewed as combined in 

clusters, e.g., bundles of goods or sets of practices. This clustering naturally arises when the 

payoff associated with the level of one variable is increasing in the level of another variable; that 

is, when they are complements. The underlying supermodular structure of the decision makers’ 

objective function constitutes the essence of such situations (Milgrom and Roberts 1990). 

Complementary choices are ubiquitous and appear in consumption problems, production 

contexts, dynamic choices, and organizational design (Berry et al. 2014). They are relevant in an 

agricultural setting as well, where farmers’ decisions increasingly pertain to choices of 

“systems” composed of alternative combinations of inputs or practices. For example, the choices 

of which crop to produce, what rotation to use and type of tillage to employ are often 

intertwined with mechanical equipment investments and the choices of an array of chemical 

inputs and genetics. An accurate characterization of such choices—that is, determining whether 

they form a technology system linked through complementarity—is crucial for both policy 

analysis and the evaluation of alternative hypotheses. Indeed, many policy interventions entail 

spillover effects and unintended consequences, which are often the result of unaccounted-for 

complementarities between targeted and other variables.  

An open question in agriculture that can benefit from a focus on complementarity 

relates to the environmental implications of genetically engineered (GE) crop varieties. Since 

their introduction in 1996, GE crops have been both commercially successful and controversial 

(Moschini 2008). Environmental concerns have ranged from the possibility that adoption of GE 

crops facilitates monoculture to the detriment of desirable rotations, to the incentive that 

herbicide tolerant crops provide for the increased use of certain herbicides, and the risk of 

resistance build-up among the weeds and insects targeted by GE traits. Potential environmental 

benefits have been posited as well, however, such as a reduction in the use of certain 

insecticides and a reduction in agriculture’s footprint (Barrows, Sexton and Zilberman, 2014). 

An additional important hypothesized impact, which at present remains unresolved, is that the 
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adoption of glyphosate tolerant (GT) crops induces the adoption of environmentally beneficial 

tillage methods.  

Tillage is an important part of farming. It aids in seedbed preparation and has 

historically provided a critical means for weed control both before and after the crop has 

emerged (Givens et al. 2009). It has nonetheless been associated with several negative effects, 

including increased soil erosion (Blevins and Frye 2003), chemical runoff (Fawcett, Christensen 

and Tierney 1994), and the carbon footprint of agriculture (Kern and Johnson 1993; West and 

Marland 2002). Conservation tillage (CT), defined as a tillage system that leaves at least 30% of 

crop residues on the soil surface, has long been advocated as a way to reduce these detrimental 

effects (Holland 2004). Even before the introduction of GT crops, the use of CT had increased 

significantly in the second half of the twentieth century, largely due to the adoption of chemical 

herbicides that allowed growers to reduce their reliance on tillage for weed control. Despite 

this, the chemical-induced diffusion of CT was limited by several factors. First, to be effective 

some herbicides need to be applied at levels that can injure the crop; for high-residual 

chemicals, those injuries can potentially extend to future crops.  In addition, the range of weeds 

that a typical chemical can treat is narrow, the post-emergence application window for many 

chemicals is highly sensitive to the environment, and there is often antagonism between grass 

and broad-leaf herbicides. In this setting, the advent of GT soybeans, introduced in the United 

States in 1996, was a game changer. Glyphosate is an effective broad-spectrum, low-residual 

herbicide, and GT crops can be treated with glyphosate with little to no injury (Carpenter and 

Gianessi 1999).  

Because the combination of glyphosate and GT crops provides such an effective and 

convenient post-emergent weed control strategy, it can change farmers’ propensity to adopt CT. 

Indeed, previous evidence indicates a positive correlation between GT crops and CT: cropped 

acreage under ‘no-tillage’ systems has increased considerably in the United States, Argentina, 

and Canada since the introduction and widespread adoption of GE varieties (Barrows, Sexton 

and Zilberman 2014, Fernandez-Cornejo et al. 2014). To investigate whether these correlations 

indicate a complementary relationship, previous research has employed econometric models 
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that estimate whether the adoption of GT varieties induces the adoption of CT, and also 

whether the adoption of CT induces the adoption of GT varieties. For cotton, Roberts et al. 

(2006), Frisvold, Boor, and Reeves (2009), and Kalaitzandonakes and Suntornpithug (2003) 

conclude in favor of complementarity, whereas Banerjee et al. (2009) fail to reject the null 

hypothesis that CT and GT cotton are independent. For soybeans, Fernandez-Cornejo, Klotz-

Ingram and Jans (2002) and Fernandez-Cornejo et al. (2013) present evidence support a causal 

relationship between CT and GT soybeans, whereas the results in Fernandez-Cornejo et al. 

(2003) partially reject the presence of complementarities.  

Overall, the evidence in favor of complementarity between GT crops and CT outweighs 

that against it, but data limitations and certain methodological assumptions restrict the 

generality of the existing findings. With respect to data, we note that, because of its nature, 

complementarity is best studied at the level of individual choices. Yet, three of the papers cited 

above (Roberts et al. 2006, Frisvold, Boor, and Reeves 2009, and Fernandez-Cornejo et al. 2013) 

rely on state-level data rather than farm-level choices. The three studies that do rely on farm-

level data (Fernandez-Cornejo et al. 2003, Kalaitzandonakes and Suntornpithug 2003, and 

Banerjee et al. 2009) have access to just a single cross-section. Regarding methodology, two 

important features for the identification of complementarity have been neglected by previous 

studies. First, an appropriate test for complementarity requires a choice-set defined over all 

possible combinations of the available practices (Gentzkow 2007). For example, a grower facing 

the choice between two binary technologies would be modelled as choosing between four 

technology systems. When this is not true—as is the case for the bivariate probit or logit models 

often used in existing studies in this area —complementarity is either ruled out or inadequately 

characterized (Miravate and Pernías 2010, Gentzkow 2007). The second important modelling 

feature is allowance for the possibility that the unobserved returns are correlated across 

practices. This is because the clustering (or lack thereof) of the observed practices may be the 

result of correlated unobserved tastes, rather than complementarity. Restricting the unobserved 

returns across practices to be uncorrelated—as done by nearly all existing studies dealing with 

the complementarity between GT crops and CT—can lead to accepting complementarity when 
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it is absent, or rejecting complementarity when it is present (Athey and Stern 1998; Cassiman 

and Veuglers 2006). 

In this paper we reconsider the problem of testing for complementarity between GT 

crops and conservation tillage. The novelty of our contribution relates to both the data used, 

which are considerably more extensive than in previous applications, and the econometric 

methodology that we apply, which draws on recent econometric advances. Concerning data, we 

use a representative farm-level dataset that spans the period 1998–2011 and contains the seed 

and tillage choices of 29,518 soybean growers. Because GT soybeans were commercially 

introduced in 1996, our data covers much of the period during which growers transitioned from 

conventional (CV) soybeans to GT soybeans. Moreover, while our dataset is not a balanced 

panel it does contain repeated observations over time for a subset of the individuals (on 

average, 43% of farmers sampled in any given year are re-sampled the next year). As a result, 

for many farmers we observe whether or not their tillage choice changed upon switching to GT 

soybeans, thus aiding in distinguishing complementarity from the correlation among 

unobserved returns. Regarding methodology, our empirical framework is based on a structural 

model with a single choice set for farmers that includes all four possible combinations of 

adoption decisions over GT soybeans and CT. This contrasts with previous farm-level tillage 

studies, where a grower is modelled as making two simultaneous, albeit distinct, adoption 

decisions. In such models, complementarity is not directly estimated and consequently the 

results can be difficult to interpret.1 Our model also controls for the correlation induced by 

unobserved heterogeneity by estimating the full covariance matrix associated with the 

individual random effects.2  

                                                      
1 For example, Fernandez-Cornejo et al. (2003) found that the adoption of GT soybeans did not induce 

the adoption of CT, but that the adoption of CT did induce the adoption of GT soybeans. It seems difficult 

to provide a structural interpretation to such an asymmetric adoption interaction, and it is unclear what 

one ought to conclude about whether CT and GT soybeans are complementary. 

2 An example of the type of unobserved factors we have in mind is a farmer’s education. If producers 

with more education are both more likely to use CT and adopt GT soybeans, then the unconditional 
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Our results indicate that GT soybeans and CT are indeed complementary, a conclusion 

supported by several robustness checks. We also use our results to investigate the 

counterfactual scenario in which soybean growers did not have the option of choosing GT 

soybeans. We find that that the adoption rates for both CT and no-tillage have increased by 

about 10% and 20%, respectively, due to the availability of GT soybeans. One of the implications 

of this result is that soil erosion was potentially lowered by 27 million tons per year during the 

1998-2011 period. An approximate dollar value for this reduction is $189 million per year.    

The rest of this paper proceeds as follows. We first develop the model to be estimated, 

beginning with an exposition on the challenges associated with the econometric analysis of 

complementarity. We then specify the model and present the econometric procedure, with an 

explicit discussion of the identification conditions. This is followed by a description of the data, 

and a presentation and discussion of the empirical results. The paper concludes with a brief 

investigation of some counterfactual scenarios and a discussion of possible policy implications.   

 

Modeling Complementarity 

 

The definition of complementarity between two activities is that the marginal return to 

each activity is increasing in the level of the other activity. The relevant return to focus on 

depends on the objective function of the decision maker. For technology adoption, it is natural 

to focus on the profit associated with the various potential choices. The characterization of the 

notion of complementarity is best expressed by the property of supermodularity of the objective 

function (Brynjolfsson and Milgrom 2013). Consider two technologies or practices that a 

producer can choose to adopt separately, together, or not at all. Let 1jd =  and 0jd =  denote, 

respectively, the adoption and non-adoption of practice j , for ∈ {1,2}j . The profit from using 

                                                      
correlation between CT and GT soybeans would be greater than the correlation that conditions on 

education. 
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any one of the four possible combinations of practices can therefore be expressed as 1 2( , )d dπ . 

Practices 1d  and 2d  are said to be complementary if profits are supermodular, i.e., if  

(1) [ (1,1) (1,0)] [ (0,1) (0,0)] 0.γ π π π π≡ − − − ≥       

When two practices are complementary, therefore, adoption of one while using the other 

has a larger effect on profits than adopting the practice in isolation. The structural 

representation in (1) provides the basis for testing hypotheses about complementarity. 

Depending on the type of data at hand, there are two ways to proceed. First, given access to 

firm-level profit data, γ  can be directly estimated (see Cassiman and Veugelers 2006). Often, 

however, data on profits (or other suitable performance measures) are not available—this is the 

case in our study. Alternatively, the hypothesis of equation (1) can be tested using adoption 

data only. The presumption is that a producer chooses the combination of practices that 

maximizes returns, thereby revealing information about the interaction between those practices.  

Two significant challenges arise, however, in testing for complementarity with adoption 

data. First, the empirical framework needs to explicitly distinguish between complementarity 

and the correlation induced by unobserved heterogeneity. A common reduced-form approach 

taken by past studies, for example, has been to test for complementarity by estimating the 

correlation between two activities after controlling for firm characteristics (Arora and 

Gambardella 1990; Arora 1996; Cassiman and Veugelers 2006). The main limitation of this 

approach is that one can rarely control for all relevant characteristics; thus, finding a 

conditionally positive correlation will, at best, indicate that complementarity might be present. 

Alternatively, Athey and Stern (1998) outline a structural framework in which γ can be directly 

estimated (while still controlling for unobserved heterogeneity). Several papers have since used 

such a framework to test for complementarity in different environments. For example, Miravete 

and Pernías (2006) use a version of the multinomial probit model to test for complementarity 

among production and innovation strategies, and Gentzkow (2007) uses a mixed logit model to 

test for complementarity between print and online newspapers. Although these two papers 

pursue different modelling frameworks, an essential element of both is that the choice-set 
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includes all possible combinations of available practices.3 This permits the sign of γ  to be 

directly estimated. Furthermore, both papers control for the potential correlation among the 

unobserved returns. Miravete and Pernías (2006) estimate the covariance between the 

unobserved returns to each practice. Similarly, Gentzkow (2007) allows the normally 

distributed error terms in his mixed logit framework to be correlated. This is in contrast to 

multinomial logit models, where the errors are assumed to be independently and identically 

distributed (IID) across alternatives.4  

The second significant challenge to testing for complementarity with adoption data is 

sufficient identifying variation. The basic problem is that the observed clustering of two 

practices could result either from unobserved heterogeneity or true complementarity (as 

defined in (1)). For example, observing that two practices are almost always adopted together 

could be entirely due to individuals simply having a high preference for both practices, rather 

than the presence of an interaction effect. Additional information or identifying restrictions are 

thus required to distinguish between these two alternative explanations. In estimating our 

model we draw on three sources for identification. One source is exclusion restrictions, i.e., the 

inclusion of variables that affect the returns to some practices but not others (Gentzkow 2007). 

                                                      
3 In general, if there are n  available practices then the choice-set would consist of 2n  alternatives. As 

Berry et al. (2014) note, the fact that the choice set grows exponentially can be a serious limitation to the 

types of problems that can be studied using this approach.  

4 Two related studies in the agricultural literature deserve mention. Wu and Babcock (1998) use a 

multinomial logit model to explore the environmental implications of three farming practices. The choice-

set they specify consists of all eight possible combinations of the three practices. However, because of 

computational considerations, they do not allow for correlation among the unobserved returns. 

Moreover, the objective of their study was not to test for complementarity (e.g., they do not try to 

estimate γ ). Dorfman (1996) uses a multinomial probit model to study two technology adoption 

decisions by U.S. apple growers. He also specifies the choice-set over all combinations of decisions, and 

his model allows for the unobserved returns to be correlated (by estimating the covariance matrix). 

However, he does not attempt to identify structural complementarity. 
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The intuitive basis of exclusion restrictions is that changing a variable that only directly affects 

one practice will have no impact on the adoption of another practice unless they are inter-

related.5 A second source of identification is panel data (Gentzkow 2007). Repeated 

observations for an individual indicate whether (s)he, upon changing one practice, is more (less) 

likely to choose another practice, thereby indicating that the practices are complements 

(substitutes). A third source of identification, the intuition behind which is similar to the idea of 

exclusion restrictions, is exogenous variation in choice-sets (Nevo 2000, p. 529). If some growers 

lack access to a certain practice, e.g., GT seed, then observing that they are less (more) likely to 

adopt another practice, e.g., CT, would indicate the presence of complementarity 

(substitutability). We return to how identification conditions apply specifically in our setting 

after we have provided details on the model.  

The Model  

We implement a variant of the mixed logit model similar to Gentzkow’s (2007) 

framework. Let soybean growers be indexed by {1,..., }i N∈ , a year by {1,..., }t T∈ , and a field 

by {1,..., }itf F∈ .  The formal unit of analysis is a farm-field-year combination. On each field in a 

given year, a soybean grower makes a discrete choice for two practices: the type of seed to 

plant, denoted by sd ; and the type of tillage to employ, denoted by dτ . For seed, a grower may 

choose conventional seed ( )sd CV=  or glyphosate tolerant seed ( )sd GT= ; for tillage, he may 

choose intensive tillage ( )d ITτ =  or conservation tillage ( )d CTτ = . With two practices, there 

are four mutually exclusive systems ( , )sd dτ : 

(2) 0 {( , ),( , ),( , ),( , )}.CV IT GT IT CV CT GT CTΩ ≡    

Denote the choice set for each grower in each year by itΩ . For the most part, 0itΩ = Ω . That is, 

we assume that nearly all growers in all years can choose among all four systems. However, a 

                                                      
5 Keane (1992) demonstrated via simulation that the covariance matrix of a multinomial probit model 

is not well-identified without exclusion restrictions.  
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handful of crop reporting districts (CRDs) early on in the sample have no observed GT soybean 

purchases.6 For these districts-years the presumed choice-set is: {( , ),( , )}it CV IT CV CTΩ = .  

Rather than directly specifying the normalized returns for each pair of choices, as done 

in Gentzkow (2007), in our setting it is instructive to start with the (unobserved) per-acre profit 

associated with system ( , )sd dτ , denoted by ( , )itf sd dτπ . For each of his/her field in each time 

period, grower i  chooses system ( , )sd dτ  such that ( , ) ( , )itf s itf sd d d dτ τπ π ′ ′>  , for all ( , )s itd dτ′ ′ ∈Ω  

where ( , ) ( , )s sd d d dτ τ′ ′ ≠ . For each system, the per-acre returns are specified to depend on a 

number of observable and unobservable variables, as follows:  

(3) 
π β β β β β β β

β β β β ν ν ε

= + + + + + +

+ + + + + + +

    



   
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(6) 
π β β β β β β β
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= + + + + + +
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( ) .
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EI Palmer Trend
 

In these equations, ,CV tp  and ,GT tp  represent the year t seed prices for CV and GT 

soybeans, respectively. Similarly, ,CV tr , and ,GT tr  denote the prices of herbicides used on these 

two types of varieties. itSize  is a dummy variable indicating whether the grower grew more 

than 500 acres in soybeans. tFuel  is a price index for diesel fuel, tFutures  is the average soybean 

futures price in January for the next November contract, iEI  is an index that measures soil 

                                                      
6 CRDs are regions—each representing a collection of counties—used by the USDA for statistical 

reporting of certain data. It is also the finest level at which our seed and tillage data are representative. 
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erodibility, itPalmer  is a drought severity index and tTrend  is a time trend. 7 The iν  terms are 

time-invariant, practice-specific normally distributed unobservables. They represent individual 

characteristics we do not observe, such as education, which may affect the returns to the 

different practices. As we discuss further below, we allow for the iν  to be correlated across 

systems. The terms ,sd d
itf

τε  are system-specific IID type I extreme value errors.8 Their inclusion 

captures the fact that growers with the same characteristics and the same environment may still 

choose a different system.  

The remaining symbols in equations (3)-(6) are parameters to be estimated. The 

intercepts ,
0

sd dτβ  are alternative-specific constants that capture the mean unobserved returns to 

each system. The superscripts of the other parameters indicate whether, and how, the associated 

variables are presumed to have a practice-specific effect. For example, we assume that iEI , 

which is invariant across systems, will differ in its impact on profits depending on the type of 

tillage used. If this were not the case, i.e., if the effect of iEI  was the same across systems then it 

would have no effect on the grower’s choices (the term would drop out upon differencing the 

equations). This highlights the additional fact that not all of the parameters in equations (3)-(6) 

are identified. Only parameters that contribute to differences in per acre returns are estimable 

(Train 2009).  

To clarify which parameters are identified, as well as how the model nests a test for 

complementarity, we normalize returns relative to a base system, which is taken to be the 

                                                      
7 Further details on and summary statistics for each of these variables are provided in the Data 

section below. 

8 Per standard practice, the variance of the extreme value distribution is normalized to 2 6π . Thus, 

the model coefficients are identified relative to the unobserved scale parameter (see, e.g., Kurkalova, 

Kling, and Zhao 2006).  
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( , )CV IT  system. Defining ( , ) ( , ) ( , )itf s itf s itfd d d d CV ITτ τπ π π≡ −  , normalized returns can then be 

written as follows:  

(7) ( , ) 0itf CV ITπ =         

(8)   0 1 , , 2 , , 3 8( , ) ( ) ( )GT GT GT GT GT
itf GT t CV t GT t CV t it i itfGT IT p p r r Size Trendπ β β β β β ν ε= + − + − + + + +   

(9) 
π β β β β β β

β ν ε

= + + + + +

+ + +

0 3 4 5 6 7

8

( , ) CT CT CT CT CT CT
itf it t t i it

CT CT CT
t i itf

CV CT Size Fuel Futures EI Palmer

Trend
  

(10) γπ π π γ ε= + + +( , ) ( , ) ( , ) ,itf itf itf itfGT CT GT IT CV CT    

where, for each system,  the parameters’ superscript now denotes the practice that is different 

relative to the base system ( , )CV IT  (e.g., , ,
0 0 0

GT IT CV ITGTβ β β≡ −  ). Furthermore:  

(11) ( ) ( ), , , ,
0 0 0 0
GT CT GT IT GT IT CV ITγ β β β β≡ − − −     

(12) ( ) ( ), , , ,GT CT GT IT CV CT CV IT
itf itf itf itf itf
γε ε ε ε ε≡ − − −    .  

Hence, the sum itf
γγ ε+  captures whether GT soybeans and CT are complementary. To see this, 

note that, in terms of the un-normalized returns, we have:  

(13) ( ) ( )γγ ε π π π π+ = − − −   ( , ) ( , ) ( , ) ( , ) .itf itf itf itfitf GT CT GT IT CV CT CV IT    

Equation (13) revisits the relation in equation (1), which determines whether the two 

choices of interest are complementary. However, this relation is now adjusted for the presence 

of unobserved heterogeneity; complementarity can vary over the population through itf
γε . 

Because [ ] 0itfE γε = , it follows that γ  is best interpreted as a measure of mean complementarity 

in the population. If our estimate for γ  is statistically significantly greater (less) than zero, then 

GT soybeans and CT are, on average, complements (substitutes). Note also that, in this 

framework, γ  does not vary on the basis of the observable characteristics. This is a consequence 

of our assumption that the observable variables have practice-specific effects rather than 
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system-specific effects. This assumption is primarily rooted in our goal of obtaining a 

straightforward test for complementarity, as encapsulated by γ . In this regard we follow 

Miravete and Pernías (2006), Gentzkow (2007), and Kretschmer, Miravete, and Pernías (2012), 

who also specify the observable variables as having practice-specific effects rather than system-

specific effects.9   

To control for the correlation induced by unobserved heterogeneity, we allow for GT
iν  

and CT
iν  to be correlated. Specifically, we assume that ( , ) ~ (0, )GT CT

i i Nν ν Σ , where  

(14) 
2

,
2

,
.GT GT CT

GT CT CT

σ σ

σ σ

 
Σ =   

 
   

By estimating ,GT CTσ , we control for unobserved factors that contribute simultaneously 

to the returns of ,GT IT
itfπ  and ,CV CT

itfπ . For example, if CT
iν  is large (small) whenever GT

iν  is large 

then these two terms will be positively (negatively) correlated. Without controlling for such 

correlation, estimates of γ  would be biased upward (downward). Some of the specific kinds of 

unobserved variables that we have in mind include the grower’s education, attitude towards 

new technologies, and degree of risk aversion. For example, better educated individuals may 

face lower adoption costs and so may be more likely to use both GT soybeans and CT. Similarly, 

individuals that are generally more open to new technologies (so-called early adopters) may be 

more likely to use both GT soybeans and CT. If a person is very risk averse, on the other hand, 

the opposite may hold true: GT soybeans may be viewed as less risky than CV soybeans 

whereas CT may be viewed as more risky than IT, leading to a negative correlation between the 

unobserved returns. 

Because we have differenced out the returns to the ( , )CV IT  system, the model as 

written in equations (7)-(10) makes explicit which parameters are identified. The parameters on 

variables that enter all of the equations are identified relative to the ( , )CV IT  system. For 

                                                      
9 See Athey and Stern (1998) for a more detailed discussion of these issues. 
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example, the sign of the estimate for 1
GTβ  will indicate whether a large farm is more likely to 

adopt GT soybeans relative to CV soybeans. The parameters on the alternative-specific variables, 

such as prices, indicate how changes in the differences of those variables affect returns. For 

example, β1  is the effect of a change in the price of GT seed relative to the price of CV seed. 

Identification 

The model as presented is formally identified: there are more moments than parameters. 

However, as noted previously, the precise identification of the parameters, in particular the 

complementarity and covariance parameters, requires additional sources of variation and 

information that go beyond the basic formal requirements. The issue is that the patterns of 

adoption generated by a model with positively correlated unobserved returns (σ ,GT CT  is high) 

and practices that are substitutes (γ < 0 ) can be very similar to the adoption patterns generated 

by a model with negatively correlated unobserved returns (σ ,GT CT  is low) and practices that 

are complements ( 0)γ > . Thus, to distinguish between correlated tastes and complementarity 

requires some form of variation in the data that would occur because of only one of these 

effects, while holding the other constant.10      

As noted earlier, one source of identification is exclusion restrictions. To illustrate the 

role of these identifying restrictions in the context of the model just presented, suppose that the 

price of GT soybean seeds relative to that of CV soybeans directly affects the seed choice but not 

the tillage choice (i.e., the relative seed price is an excluded variable). Further, suppose that 

there is a shock to this relative price, for example it decreases. Then some producers will switch 

from CV soybeans to GT soybeans. If GT soybeans and CT are independent, then there should 

be no change in the adoption of CT since the seed price does not directly affect it. If they 

complement, however, then we would also observe an increase in the use of CT. Some of the 

producers that previously chose CV soybeans with IT would switch to using GT soybeans with 

                                                      
10 For a more comprehensive discussion of these issues, see Gentzkow (2007).  
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CT. Intuitively, the switch to GT soybeans (based on the price change) would shift up the return 

to CT, thus also leading to its adoption.  

The variables that fulfil the exclusion restrictions in our model are those that affect the 

seed choice – i.e., variables in equation (8) – but not the tillage choice (equation (9)), and vice 

versa. The specific variables that we assume directly affect the seed choice but not the tillage 

choice include the difference in seed prices , ,( )GT t CV tp p−  and the difference in herbicide prices 

, ,( )GT t CV tr r−  (i.e., these variables enter the second equation but not the third). Differences in 

relative seed prices should have no effect on the relative return to the different tillage 

operations. With regard to herbicide prices, previous studies by Bull et al. (1992), Fawcett et al. 

(1994), and Fuglie (1999) do not find a significant difference in pesticide use between CT and IT 

systems; thus we assume it does not directly affect the tillage choice.11  

The variables assumed to directly affect the tillage choice but not the seed choice include 

tFuel , tFutures , iEI , and itPalmer . The variable tFuel  is included to capture the argument that CT 

generally requires less fuel (Triplett and Dick 2008). For a given tillage method, however, there 

will be little difference in fuel usage for different seed types. Similarly, the iEI  only enters the 

tillage equation because the degree of erodibility will not have a differential effect on the seed 

choice (holding the tillage-type constant). The same argument applies for itPalmer , which is 

included because CT leaves more ground cover in place and may be chosen to conserve 

moisture in dry years. Finally, tFutures  is included to capture changes in relative returns due to 

yield differences between the tillage options. Previous research has generally indicated that 

there is no significant yield difference between GT and CV soybeans (Qaim 2009). Rather, the 

primary reason farmers prefer GT soybeans is because they provide easier weed control and a 

reduction in management time (Qaim 2009). 

                                                      
11 As part of robustness checks reported later, we do allow for herbicide prices to differ in their 

impact by the type of tillage employed. We find that it does not affect our complementarity result.  
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The contribution of panel data to identification occurs through the estimation of the 

distribution of the time-invariant random effects. Intuitively, if the adoption of GT soybeans 

and CT are correlated because of a high covariance parameter σ ,GT CT  (rather than 

complementarity), then the adoption of GT and CT for a given individual would be 

uncorrelated over time. Individuals may have a high propensity to use both, but conditional on 

changing one practice, they would be no more (or less) likely to use another. On the other hand, 

if we observe across time periods that whenever a given individual adopts GT, he or she is 

more likely to adopt CT, then this would imply the presence of synergies. Regarding choice-set 

variation, as noted previously, early on in our sample we do not observe any purchases of GT 

varieties in certain crop reporting districts (CRDs). We interpret this to mean that they were not 

available as an option, and thus we exclude them from the choice-sets of individuals within that 

region.12 

 

Estimation 

 

The model is estimated by the method of simulated maximum likelihood (SML) (Train 

2009). To simplify the notation, let j  denote system ( , )sd dτ , that is, itj ∈Ω . Furthermore, 

rewrite equations (7)-(10) as:  

(15) π β ν ε= + + ,j j j jj
iitf itf itfx    

where j
itfx  is the vector of explanatory variables pertaining to system j , and jβ  is the 

associated parameter vector (note that , 0CV IT
itfπ = , as above). Let θ  denote the vector of all 

parameters to be estimated (this includes the vector of all β  parameters, which implicitly also 

define the complementarity parameter γ , as well as the parameters of the covariance matrix Σ

                                                      
12 Because only a small number of CRDs do not have observed GT seed purchases (early on in our 

sample), this type of identification plays a small role in our analysis. 
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). Then, for a given realization j
iν , the probability of choosing system j  is provided by the 

standard logit expression:  

(16) ( ; )
j jj

iitf

k k k
itf i

it

x
j
itf x

k

eL
e

β ν

β ν
ν θ

+

+

∈Ω

=
∑

.   

Let itf itj ∈Ω  denote the actual system choice of grower i  for field f  in year t , and 

define { }i itfjζ ≡  as the set of all actual choices in the sample for grower i . Given j
iν , the 

probability of iζ  is given by the product of the corresponding logits: 

(17) ( ; ) ( ; )
i
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j
itf

j
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ν θ ν θ

∈
= ∏ .  

The unconditional probability is given by the integral over all ν that generate iζ : 

(18) ( ; ) ( )
i i

P L f dvζ ζ ν θ ν= ∫ .   

Since 
i

Pζ  is an integral it can be estimated via simulation. For each individual, multiple draws 

of the ijν  are taken, 
i

Lζ  is computed, and then averaged. Specifically, let R  denote the number 

of draws of j
iν  for each individual. Then 

i
Pζ  is approximately given by:  
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The SML estimator is therefore given by: 
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The statistical package that we use is the Stata user-written mixlogit package developed 

by Hole (2007) (for further details see also Cameron and Trivedi, 2010, p. 523). In simulating the 

likelihood function we use 250 Halton draws, which is well above the minimum 
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recommendation of 100 (Hensher, Rose, and Greene 2005, p. 616).13 It is also important to re-

emphasize that the estimated parameters, θ̂ , are identified relative to the unobserved variation 

of the IID extreme value unobservables, which are implicitly normalized prior to estimation (see 

earlier footnote 8). Thus, for example, instead of estimating the complementarity parameter γ , 

the model actually estimates γ φ  (where φ  is the unobserved scale parameter for the extreme 

value type I distribution). For simplicity, and slightly abusing notation, we continue to use the 

same parameter symbols (e.g., γ ) for the remainder of the paper.  

 

Data 

 

The model is estimated with farm-level seed and tillage data from the survey company 

GfK.14 These data, which are designed to be representative at the CRD level, span 1998–2011 

and include about 4,982 farmers per year (each farmer can have multiple fields). As noted 

above, about 43% of growers sampled in any given year are also sampled the next year. In total, 

our sample contains 82,056 farm-field-year observations across 235 CRDs in 31 states (with the 

largest soybean states being the most heavily represented). Among the variables previously 

defined, those that come from the GfK data include tillage and seed choices (i.e., the 

endogenous variables), seed and herbicide prices, and the variable for farm size. With respect to 

the tillage choice, in our data each plot is identified as using one of three following alternatives: 

“Intensive Tillage,” “Conservation Tillage,” or “No-Till.” For our baseline specification, we treat 

intensive tillage as a distinct category, and combine the plots identified as “Conservation 

Tillage” and “No-Till” into the model’s CT category. However, we also consider an alternative 

                                                      
13 Train (2000) demonstrated that the SML estimates for a mixed logit model using 100 Halton draws 

outperform the SML estimates using 1,000 random draws. The practical benefit of this is that estimation 

time is decreased by a factor of ten while simultaneously increasing accuracy. For a further discussion of 

Halton sequences see Train (2009).  

14 Specifically, we use data from GfK’s AgroTrak® and Soybean TraitTrak™. See the company’s 

website (http://www.gfk.com/us ) for a brief description of these proprietary data products. 

http://www.gfk.com/us
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aggregation procedure where the model’s CT category is associated only with the plots 

classified as “No-Till” (NT) in the dataset, and combine the remaining two classifications into 

the model’s IT category. Where applicable, we make explicit which definition is being used. 

The shares for each seed-tillage system are provided in table 1, where the distribution of 

system choices over time are disaggregated into three sub-periods. From 1998–2001, CV 

soybeans still accounted for about 40% of the observations, but from 2002–2006 they only made 

up about 13%, and for the final sub-period just over 5%. Overall, systems with GT soybeans 

accounted for about 80% of all observations, whereas systems with CT accounted for about 62% 

of all observations. 

Table 1 also shows that about 67% of acres planted to GT soybeans use CT whereas 

about 50% of acres planted to CV soybeans use CT. This is generally consistent with previous 

work based on different data sources (e.g., Fernandez-Cornejo et al. 2014).  The correlation 

coefficient between GT soybeans and CT is 0.125 and is significant at a 1% level. Changes over 

time also show a positive correlation. Figure 1 contains U.S. annual adoption rates for GT 

soybeans, CT, and NT from 1998–2011. GT soybean adoption increased from just under 40% of 

acres in 1998 to about 95% of acres in 2011. Over the same period, CT increased from just under 

60% of acres in 1998 to nearly 70% of acres in 2011. NT increased even more, from 32% in 1998 

to 45% in 2011 (and a peak of 53% in 2008).  

With regard to the remaining variables, the EI data were obtained from the National 

Resources Inventory (a survey conducted by the National Resources Conservation Service), 

soybean futures were obtained at www.quandl.com, diesel fuel prices were obtained from 

Quick Stats at the USDA-NASS website, and the Palmer Z-Index was obtained from 

www.ncdc.noaa.gov. Below we provide additional details, as well as a discussion of their 

expected effects, for each of the regressors. Table 2 provides a summary of their distributions. 

Farm Size is a dummy variable that indicates whether a grower planted more than 500 

acres in soybeans. The arbitrary cut-off of 500 acres was a natural choice given the available 

data, in which each farm is classified into one of five categories:  (i) <100 soybean acres, (ii) 100–

http://www.quandl.com/
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249 acres, (iii) 250–499 acres, (iv) 500–999 acres, and (v) 1,000 or more acres.15 We include Farm 

Size for both the seed and tillage choices to control for scale effects. Past studies have noted that 

the use of CT, in particular no-tillage, can require large fixed costs in the form of better adapted 

machinery (Knowler and Bradshaw 2007). Given this, we expect that larger farms will be more 

likely to adopt CT. With regard to the seed choice, we have no strong prior expectations. 

Fernandez-Corenjo et al. (2002) find that larger farms are more likely to adopt GT soybeans, 

whereas Fernandez-Cornejo et al. (2003) find no size effect. The latter argue that since the 

adoption of GT soybeans does not require significant fixed costs, there should not be significant 

differences in adoption between large and small farms.  

Futures is the Chicago Mercantile Exchange mean soybean futures price in the month of 

January for same year November contract. It is included as a proxy for the output price that is 

expected by producers. We use January because that is a common time at which practice 

decisions are made, and we use November because it is the closest month after harvest.  We 

include it as an explanatory variable for the tillage choice because there might be yield 

differences between IT and CT. Previous studies, however, are inconclusive on the effect of 

output prices on CT (Knowler and Bradshaw 2007).  

Fuel Price is an annual index for diesel fuel prices (as noted above, it is obtained from 

USDA-NASS). We use the mean index from September to May as this is the period during 

which most tillage decisions are made. The index is included to control for potential differences 

in fuel usage between CT and IT operations. From 1998–2011, real fuel prices rose significantly 

and thus could explain some of the variation in tillage trends. Since CT tends to use less fuel, 

our expectation is that higher prices will increase the likelihood of using CT.  

EI is a county-specific, time-invariant index of soil erodibility due to water events. It 

measures a soil’s potential to erode. A higher index indicates that greater investment is required 

to maintain the sustainability of the soil under intensive cultivation. The National Resources 

                                                      
15 For robustness checks we also estimate the model with the Size variable cutoffs set at 250 and 1,000 

acres. Overall, the results remained unchanged.  
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Inventory considers scores of 8 or above to indicate highly erodible land. The EI is included for 

a couple of reasons. First, the 1985 Farm Bill requires a producer that grows crops on highly 

erodible land to meet certain minimum conservation requirements (Stubbs 2012) in order to be 

eligible for some government payments. An acceptable way to comply is to use CT. Second, a 

grower may be more likely to use CT on highly erodible land in order to preserve the soil’s 

productivity into the future (Soule, Tegene, and Wiebe 2000). Given these two rationales, as 

well as previous findings, we expect that the EI will have a positive sign; i.e., a grower will be 

more likely to use CT on more erodible land.  

Palmer’s Z is the mean Palmer’s Z-Index for the month of September in the prior year 

(this variable is at the climate-division level; see Xu et al., 2013, for more details). This index 

indicates how dry a locality is relative to normal conditions. Negative values indicate drier 

conditions, whereas positive values indicate wetter conditions. We include Palmer’s Z-Index 

because the presence of drought may increase the likelihood of adopting CT. For instance, Ding, 

Schoengold, and Tadesse (2009) find that drought is associated with a greater likelihood of 

using no-till and other CT practices.   

The Seed Price term , ,( )GT t CV tp p−  is the difference between mean annual U.S. GT and 

CV soybean seed prices ($/50 lb bag). In our data we observe the transaction prices for each 

individual, but we do not observe the price for the type of seed they did not buy (e.g., if a 

grower purchased CV seeds, we do not know the price they would have paid for GT seeds). 

Thus, as a proxy for that price, we average over all individuals within a given year. We 

aggregate to the national level because, beyond 2003, there are very few observations for CV 

seed purchases. As a result, averaging at a finer level would introduce considerable sampling 

variation. Figure 2 presents GT and CV seed prices from 1998–2011.  

Prior to 2009 there was comparatively little movement in both relative prices and overall 

prices. The increase in soybean output prices in 2008 led to a significant rise in seed prices in 

2009. In terms of expectations, the higher the price of GT seed relative to CV seed, the smaller 

the return for GT seeds. Thus, a negative sign is expected. It is worth noting, however, that 

previous studies have found a positive sign for seed price (see, e.g., Fernandez Cornejo et al. 
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2002). This is likely because of the rapid diffusion of GT soybeans that coincided with a slight 

increase in relative prices; we control for this process with a time-trend. 

The Herbicide Price term , ,( )GT t CV tr r−  is the difference between the annual U.S. price 

indices for glyphosate and for a group of seven post-emergence conventional herbicides. Our 

assumption is that the glyphosate price is the main herbicide price a grower looks at when 

considering the adoption of GT soybeans. For CV soybeans, the matter is less straightforward. 

As noted earlier, many of the herbicides used on CV soybeans are only effective against specific 

weed species. In addition, only some of these herbicides can be applied post-emergence. We 

chose to use only the prices from post-emergence herbicides because they are what primarily 

differentiate CV soybeans from GT soybeans. 16 In terms of calculation, glyphosate prices are 

annual volume-weighted averages in dollars per pound. The price for CV soybeans is a 

Laspeyres Index: each year, the index is a weighted average of the ratio of current prices to base 

prices. For the base, we use the mean prices and shares of the seven herbicides for the entire 

1998–2011 period, and the resulting index is re-scaled to equal 1 for the year 1998. Figure 3 

presents these indices for the 1998–2011 period. For comparison, both the glyphosate and CV 

herbicide prices are normalized to equal 1 in 1998. The price of glyphosate has fallen 

considerably and almost uniformly since 1998. This is primarily due to the expiration of 

Monsanto’s patent in 2000. The exception to the trend decline occurred during 2008–2009, when 

prices rose significantly. During 2008–2009 commodity prices, and in turn land used for 

cropping, were very high. This, combined with a growing demand for GT corn, led to shortages 

in glyphosate and an associated price increase. 

The time Trend variable is included to capture the impact of other factors that 

contributed to the diffusion of GT soybeans and CT. This was particularly important for GT 

soybeans, and adoption rose from 38% to 86% over the period 1998–2003. This adoption pattern 

                                                      
16 The seven herbicides we include are Raptor®, Flexstar® 1.88L, Fusion®, FirstRate®, Select® 2 EC, 

Cobra®, and Pursuit® 2 EC. We selected these herbicides because they were the most frequently used 

post-emergence herbicides applied on CV soybeans.  
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was driven by a variety of factors that are not captured by our model. We expect that the 

adoption of GT soybeans will be positively associated with this trend variable. For CT, we have 

no strong prior expectations. 

 

Empirical Results 

 

Table 3 contains our baseline specification. Overall, the results are consistent with 

expectations. The alternative-specific constant for GT seed varieties is positive and significant. 

Conversely, the constant for CT is negative and significant. This is unsurprising given that a 

large number of farms continued to adopt IT despite the presence of synergies between GT 

soybeans and CT (as indicated by the result for γ ). Higher prices for GT seed (relative to CV 

seeds) and glyphosate (relative to substitute herbicides) are associated with a lower likelihood 

of using GT soybeans. Larger farms are more likely to use both GT soybeans and CT. Also, the 

relative size of the parameter for CT is significantly larger, suggesting that farm size plays a 

larger role for the tillage decision. The linear time trend is significant and positive for both GT 

soybeans and CT, though significantly larger for GT soybeans, as would be expected. Among 

the variables exclusive to the tillage decisions, there are some interesting results. Higher 

soybean futures prices are associated with a lower likelihood of using CT, though the effect is 

only significant at 5%. This suggests that there may be a small perceived yield-loss associated 

with the use of CT. For some soils the formal agronomy literature provides evidence to support 

this perception (Triplett and Dick 2008). Higher fuel prices, on the other hand, significantly 

increase the likelihood of using CT. We also find that more drought-like conditions, as captured 

by Palmer’s Z-Index, increase the likelihood of using CT, corroborating the finding by Ding, 

Schoengold and Tadesse (2009). Finally, a higher EI is also found to be associated with a 

significantly higher probability of CT use.  

For the unobservables, we find significant evidence of unobserved variation in 

preferences for both GT soybeans and CT. The unobserved variance for CT is particularly large, 

suggesting that a variety of omitted individual characteristics are important for determining the 
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best tillage practice. This seems intuitive given the relatively large adoption rates for both CT 

and IT throughout the sample period. Unobserved variation in tastes is also important for the 

seed choice, though relatively less so. This is probably a reflection of the fact that later on GT 

soybeans are adopted by nearly everyone, and thus a relatively smaller variance can rationalize 

the small share of  farms that still use CV soybeans. The covariance across the errors is also 

significant. The implied correlation is about 0.105. Thus, farmers who have a strong preference 

for GT soybeans (i.e., a large GT
iν ) are more likely to have a strong preference for CT (i.e., a 

large CT
iν ) and vice versa. Finally, the estimate for complementarity, γ , is highly significant 

and positive, indicating that GT soybeans and CT are indeed complementary practices.   

What is the economic significance, to the farmer, of the estimated complementarity 

effect? One measure is provided by a grower’s willingness to pay (WTP) for it. In a standard 

discrete choice random utility model, the WTP for an attribute is given by the ratio of that 

attribute’s coefficient to the absolute value of the coefficient for the price variable (note that the 

ratio of the two estimated coefficients will be independent of the unidentified scaling 

parameter). In our model, the objective function is profit per acre. As a result, the estimated 

coefficient for the seed price represents the number of soybean bags planted per acre (relative to 

the unidentified scaling parameter). Dividing an attribute’s coefficient by the absolute value of 

the coefficient for seed price thus gives the WTP per bag of soybeans for that attribute. For γ , 

this implies a WTP of about $1.41 per bag of soybean seeds. Given that a typical density for 

soybeans is 1.2 bags/acre, the WTP of a typical farmer for the synergies provided by 

complementarity between GT seeds and CT is $1.69/acre. 

Because the coefficients are identified relative to the scale parameter φ , only their sign is 

directly interpretable. To get a better idea of the importance of each of the variables we simulate 

the change in the adoption of GT soybeans and CT in response to a change in the value of each 

of the exogenous variables. This exercise also serves to highlight the role of complementarity for 

the impacts of each of the independent variables. Table 4 contains the Average Marginal Effects 

(AMEs) for GT and CT adoption with respect to each of the regressors. The AME of a variable is 
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the average change in the probability of adopting a practice, e.g., GT soybeans or CT, in 

response to a change in that variable. With the exception of Size, we compute elasticities. As an 

example, to calculate the effect of a change in the EI on GT soybean adoption, we first simulate 

and compute for each individual:  

(21) , Pr( ) ,
Pr( )

GT EI
itf

GT EI
EI GT

ψ ∆
≡

∆
  

where ψ ,GT EI
itf denotes the elasticity of the probability of GT soybean adoption with respect to the 

EI.  The result reported in table 4 is the average of these elasticities over all individuals, time 

periods, and fields. The superscripts “I” and “D” indicate whether the impact of the variable on 

the practice is indirect or direct, respectively.  

Overall, the results indicate that the seed price plays the largest role among the 

variables. For example, a 1% increase in the price of GT soybeans relative to that of CV soybeans 

results in a slightly-more-than 1% direct decrease in the probability of adopting GT soybeans. 

Through the complementarity effect, it also indirectly decreases the probability of adopting CT 

by 0.08%. The impacts of the other continuous variables can be interpreted in a similar manner. 

Because the variable Size is binary, an elasticity cannot be computed; instead, we compute the 

percent difference in the probability of adopting a practice between growers with more than 500 

soybean acres and growers with less than 500 soybean acres. Note also that the impacts for Size 

are made up of both direct and indirect effects. The simulation indicates that a farm with 500 or 

more soybean acres is 6.9% more likely to adopt CT and 2.1% more likely to adopt GT soybeans. 

Complementarity Under Alternative Specifications 

Certain variations on our specification, such as allowing herbicide prices to directly 

impact the relative profitability of CT, are also plausible, which may be important for the 

complementarity finding. In addition to testing for robustness across these alternatives, this 

section serves to highlight the role of certain assumptions, such as admitting non-zero 

correlation between the unobserved returns, for the estimate of γ . Table 5 contains estimates of 

γ  for several different specifications. Allowing for the Herbicide Price variable to directly impact 
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the tillage choice reduces the coefficient somewhat, but does not alter the finding of 

complementarity.  

The next specification demonstrates the effect of not allowing unobserved tastes to be 

correlated (i.e., , 0GT CTσ = ). In this case the estimate for γ  increases as it captures some of the 

effect that is actually the result of correlated tastes. We also estimate the model when ignoring 

the fact that some individuals have repeated observations (i.e., we assume that the ν  terms are 

IID across fields and time for the same individual). This substantially increases both the 

estimate and the standard error for γ , which suggests that when using the mixed logit model, it 

is important to utilize the panel aspect of the data. The “Basic Logit” specification not only 

ignores the panel aspect of the data but also does not allow for unobserved heterogeneity (i.e., 

the ν  terms are set to 0). In this case, the estimate for γ  is actually closer to the original model 

than the estimate that ignored the panel aspect of the data.  

We also estimated the model with data from the Central Corn Belt (CCB) only (the states 

we include are IA, IL, and IN). These three states account for nearly 35% of U.S. soybean land 

alone. Our result for γ  in this case is less than before. However, since γ  is estimated on a 

different sample, it is not directly comparable to the estimate obtained from our baseline 

specification. Because the parameters are identified relative to the scale parameter, a different 

value could indicate that complementarity between GT soybeans and CT is less in this region, 

but it could alternatively indicate that the IID portion of unobserved variation is larger in the 

CCB (relative to the rest of the country). 

The final specification changes the way the tillage choice is structured. Instead of 

specifying the tillage choice for the farmer as being between CT and IT, we instead specify it as 

being between no-tillage (NT) and tillage (i.e., some positive level of tillage). We expect the 

complementarities between NT and GT soybean to be even stronger than between CT and GT. 

Intuitively, the improved efficiency and convenience of weed control offered by GT varieties 

will be especially beneficial when making the leap to a NT system. This is weakly confirmed by 

the correlation coefficient between GT soybeans and NT, which is slightly larger at 0.139 
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(compared to 0.125). The estimate for γ  presented in table 4 indicates that NT and GT soybeans 

are complementary, and the magnitude of γ  is indeed larger than it was for the CT 

specification. As was noted for the case of the CCB specification, the estimates for 

complementarity are not directly comparable. Nonetheless, the fact that the estimates of the 

parameters for the GT variables – the constant, the seed price, and the herbicide price – remain 

essentially unchanged relative to the base specification, suggests that the larger estimate for γ  

is in fact the result of stronger complementarity, rather than smaller variation in the IID portion 

of unobserved tastes. 

Conservation tillage without GT varieties 

A natural question that arises from our model is what CT adoption rates would have 

been if GT soybeans were never introduced into the market. To answer this question, we 

calculate the following: (i) the annual predicted CT adoption rates using the estimates from 

table 3 (i.e., the predicted rates based on having GT soybeans as part of the choice-set); and (ii) 

the annual predicted CT adoption rates after removing GT soybeans from the choice-set for all 

individuals (also using the parameter estimates from table 3). To arrive at the first set of 

adoption rates, we first compute for each farm-field-year combination the vector of predicted 

probabilities of choosing systems with CT (which requires simulation). Specifically, 

(22) 
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The predicted probability for choosing CT is then given by: , ,ˆ ˆ ˆCV CT GT CTCT
itf ift iftL L L= + . To move 

from this expression to annual adoption rates we use a variable in our dataset that consists of 

the number of acres that each farm-field-year represents in the population for that year. Denote 

this quantity by iftA . The predicted share of CT acres in year t  is then given by 
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To compute the predicted annual shares for CT when GT soybeans are not available, we 

follow essentially the same steps, except that the predicted probability of using CT now just 

consists of a singleton, denoted by ,CV CT
iftL  (i.e., the only choice being made concerns which the 

tillage practice to use). We calculate this probability according to   

(24) 
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Note that, as compared with (22), the denominator inside of the summation in  (24) does not 

include the terms for GT choices. The predicted adoption rates for CT when GT soybeans are 

not available can then be computed as in (23), but with ,CV CT
iftL  replacing ˆCT

itfL . Table 6 contains 

these predicted adoption rates for each year of the 1998–2011 period. In 1998 the adoption rate 

for CT is 3.3 percentage points less in a world without GT soybeans as an option. This difference 

increases steadily up until 2003, at which point it begins to level off and approach 6 percentage 

points (or about 10% of the no-GT soybean scenario). This is a reflection of the diffusion of GT 

soybeans, which also began to level off in 2003. Note also that the predicted rate for CT 

increases considerably over the period, by about 10 percentage points, even when GT soybeans 

are not available. The implication of our model is that such an increase would have been driven 

mainly by steadily rising fuel prices, an overall increase in farm size, and other unknown factors 

captured by the trend variable. The simulation is also performed for NT. In this case the gains 

from complementarity are even greater. In 1998, the difference is about 4 percentage points 
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more when GT soybeans are available, and by 2011 the difference is 9 percentage points or a bit 

over 20% relative to the scenario without GT soybeans. 17  

An Application to Soil Erosion 

Conservation tillage or no tillage are not necessarily desirable, per se. Rather, interest in 

these practices is motivated by the fact that they affect a variety of environmentally-relevant 

outcomes. Exploring all such implications is beyond the scope of this paper. As suggested by a 

reviewer, however, it may be desirable to provide an illustration of one such impact. To do so, 

we compute the implied impact of GT soybeans, through their impact on NT adoption, on soil 

erosion. We base our computation on Montgomery (2007, p. 13270), which compiles and 

presents results from 1,673 measurements of erosion rates under different settings. 18 The 

median erosion rate from these measurements under conventional agriculture is about 1.5 

mm/year, which is roughly 20 times the median erosion rate of 0.08 mm/year for conservation 

agriculture. The difference of ≈ 1.4 mm/year is equivalent to ≈ 6.8 tons/acre per year (assuming 

a soil bulk density of 1,200 kg/m3). Using the percent differentials for CT from table 6, and total 

annual U.S. acres planted to soybeans (source: Quick Stats at the USDA-NASS website), this 

implies a mean reduction in soil loss of 27 million tons per year. For context, estimated total soil 

erosion for U.S. cropland in 2007—assuming a mean erosion rate of 0.95 mm/year (Montgomery 

                                                      
17 Whereas in the text we have presented a constructive procedure to compute predicted adoption 

rates if GT soybeans were not available, we note that one could obtain the same results by considering the 

counterfactual in which CT and GT soybeans are independent. That is, the simulated adoption rates in 

table 6 are identical to those one would obtain by putting 0γ =  while maintaining the full choice set. 

The intuition for the equivalence is that when the seed and tillage practices are entirely independent, then 

each is chosen separately without regard to the other.  

18 We alternatively considered computing implied soil loss using the Universal Soil Loss Equation 

(USLE), a widely used model for this purpose. However, use of this model requires detailed information 

(e.g., slope length and slope steepness) that are not available to us. Moreover, there are acknowledged 

problems with estimating soil loss based on the USLE (Trimble and Crosson 2000; Montgomery 2007).  
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2007, p. 13271) and given a total U.S. cropland of 408 million acres (USDA-ERS)—can be 

estimated at about was 1.9 billion tons. To assess the monetary value of these savings in soil 

erosion we use the USDA/NRCS estimated benefits of $4.93 per ton in water quality 

improvements and $1.93 per ton in saved fertilizer (USDA/NRCS 2009). Thus, the value of the 

benefits associated with the implied soil savings is $189 million per year. 

 

Conclusion 

 

Complementarity is arguably a common feature among many of the inputs and 

practices chosen by agricultural producers. A possible instance of complementary in agriculture 

that has attracted considerable interest concerns the interaction between herbicide tolerant 

crops and conservation tillage practices. In this paper we have developed a new discrete choice 

model of joint practice adoption in which soybean producers choose among four tillage-

soybean systems, and use it to investigate the existence and significance of complementarity 

between GT soybeans and CT practices. Our model explicitly incorporates both unobserved 

heterogeneity and complementarity, thus allowing for a direct test of whether GT soybeans and 

CT are complements. Using a large unbalanced panel dataset on individual farmers’ choices 

spanning the period 1998–2011, we find that GT soybeans and CT are indeed complementary 

practices. This finding is robust to multiple specifications. Moreover, by ignoring unobserved 

heterogeneity, the degree of complementarity is overestimated. We further find that GT 

soybeans and no-till are likely stronger complements than GT soybeans and CT. In addition to 

the complementarity findings, our results indicate that highly erodible land, drought-like 

conditions, and higher fuel prices increase the likelihood of choosing CT. We also simulate 

annual adoption rates for CT and NT in a world without GT soybeans. The simulations indicate 

that CT adoption and NT adoption have been about 10% larger (or 6 percentage points) and 

20% larger (9 percentage points), respectively, than what they would have been as a result of 

the availability of GT soybeans (holding total acreage fixed).    
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Whereas the framework of analysis that we propose and illustrate in this paper has 

broader methodological applicability to many issues in the economics of agricultural 

production, some policy implications follow immediately from our finding that GT soybeans 

and CT are complements. When complementarities are present, policy shocks that directly 

affect one activity will also indirectly affect complementary activities and will do so in the same 

direction. In recent years, for example, glyphosate weed resistance has become increasingly 

problematic in certain parts of the world (Powles 2008). As a result, there has been an initiative 

to slow that resistance in order to preserve the viability of glyphosate. Because GT soybeans and 

CT complement one another, such efforts also indirectly preserve the use of CT systems. A 

similar type of reasoning can be applied to the recent de-regulation of other herbicide tolerant 

crops (e.g., Dicamba resistant crops). To the extent that these crops also promote the use of CT, 

then their overall benefits are potentially under-estimated. 

Concerning future research, an important question that remains unanswered relates to 

the effect of herbicide tolerant crops on herbicide use. Our framework could potentially be 

extended to look at this question by also incorporating the choice of how much herbicide to use. 

More generally, our framework could be used to consider relationships between a multitude of 

other agricultural choices, such as crop-rotation, farm size, row-spacing, and the type of 

machinery to purchase. For example, economies of scope at the farm level, rooted in the 

possible submodularity of a farm’s cost structure (and so supermodularity of profits), represent 

an important possible application of our framework of analysis. Given the concerns associated 

with crop specialization and monoculture practices, especially vis-à-vis sustainability 

considerations, a deeper understanding of the complementarity relations that promote or 

hinder such trends would be valuable.  
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Appendix 

 

 

Figure 1.  Conservation Tillage and GT Adoption Rates for U.S. Soybeans (percent of acres) 

 

 

Figure 2.  U.S. Soybean Seed Prices, 1998-2011 ($/50lb) 
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Figure 3.  U.S. Soybean Herbicide Prices, 1998-2011 

 

Table 1.  Distribution of Tillage and Seed Systems (% of observations) 

System   1998-2001  2002-2006  2007-2011  1998-2011 

(CV,IT)  20.73  6.34  2.26  10.18 

(GT,IT)  21.53  30.41  29.38  27 

(CV,CT)  20.3  6.63  3.01  10.35 

(GT,CT)  37.44  56.61  65.34  52.47 

         

Observations 28,701  29,240  24,115  82,056 
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Table 2.  Regressor Summary Statistics 

Variable Mean S.D. Min 0.25 Median 0.75 Max 

Size (>500 acres) 0.33 0.47 0 0 0 1 1 

Futures ($/bu) 7.3 2.78 4.48 5.2 6.37 9.6 13.13 

Fuel Price Index 49.96 24.33 19.6 29 43.8 65.4 91.2 

Erodiblity Index 8.36 9.49 0.29 2.67 5.2 11.32 192.07 

Palmer’s Z-Index 0.29 2.47 -4.93 -1.46 -0.11 1.48 11.84 

Seed Price ($/50lb 

bag) 8.98 1.92 6.34 7.46 8.67 9.84 12.41 

Herbicide Price Index -0.28 0.2 -0.65 -0.42 -0.26 -0.1 0 
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Table 3.  Simulated Maximum Likelihood Results 

Parameter (variable) Coefficient Standard Error 

GT Adoption   

0
GTβ (constant) 1.5973*** (0.2060) 

1β (Seed Price) -0.3262*** (0.0249) 

2β (Herbicide Price) -0.9837*** (0.1565) 

3
GTβ (Size) 0.1192*** (0.0418) 

8
GTβ (Trend) 0.4420*** (0.0098) 

CT Adoption   

0
CTβ (Constant) -0.5710*** (0.1317) 

3
CTβ (Size) 0.2850*** (0.0556) 

4
CTβ (Fuel)  0.0069*** (0.0021) 

5
CTβ (Futures) -0.0255** (0.0124) 

6
CTβ (Erodibility)  0.0786*** (0.0117) 

7
CTβ (Palmer) -0.0237** (0.0097) 

8
CTβ (Trend) 0.0436*** (0.0093) 

Other parameters   

γ   0.4609*** (0.0405) 

σ 2
GT   2.2200*** (0.1097) 

σ 2
CT   3.9186*** (0.2225) 

σ ,GT CT   0.3094*** (0.0846) 

 

Notes:  
Number of observations = 82,056. Standard errors are clustered at the CRD level. Except for the 
covariance parameters, the coefficients are identified relative to φ , the scale parameter for ε j

itf . 

The covariance parameters are identified relative to φ2 . 
***Significant at the 1% level.   **Significant at the 5% level. 
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Table 4.  Average Elasticities 

   GT(%)   CT(%) 

Seed Price -1.14 D  -0.08 I 

Herbicide Price -0.11 D  -0.01 I 

Soy Futures -0.002 I  -0.04 D 

Fuel Price  0.002 I  0.07 D 

Palmer Z   -0.0004 I  -0.01 D 

Erodibility Index 0.01 I  0.10 D 

 

Notes:  

The reported effects are elasticities, i.e., the % change in the probability of adopting GT (CT) 
given a 1% change in the respective variable. See text for additional discussion. 
D = Direct Effect ;  I =Indirect Effect. 

 

 

Table 5.  Alternative Estimates for Complementarity 

Alternative Specifications γ Coefficient Standard Error 

Include Herbicide Price in CT Variables 0.4143*** (0.0395) 

No Correlation: , 0GT CTσ =   0.5849*** (0.0322) 

Ignore Panel Aspect of Data 1.3610** (0.6699) 

Basic Logit 0.5473*** (0.0333) 

Restrict Sample to Central Corn Belt Onlya 0.3039*** (0.0519) 

No-Till or Till for Tillage Choiceb 0.6514*** (0.0414) 

 

Notes: 
a Includes Iowa, Illinois, and Indiana, for which there are 26,304 observations in all. 
b This variation specifies the tillage choice as being between no-till or a positive amount of 
tillage (rather than between conservation tillage and intensive tillage). 
***Significant at the 1% level. **Significant at the 5% level. 
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Table 6 – Tillage Predicted Adoption Rates (percent of acres) 

  

 Conservation Till Predicted 

Rates   No-Till Predicted Rates 

 

 With 

GT 

Without 

GT Difference  

With 

GT 

Without 

GT Difference 

1998  53.9 50.6 3.3  31.0 27.0 4.0 

1999  55.9 52.1 3.8  32.8 28.2 4.6 

2000  57.6 53.3 4.2  35.8 30.5 5.4 

2001  59.6 54.6 5.0  38.4 32.0 6.4 

2002  59.9 54.7 5.3  38.6 31.8 6.8 

2003  62.1 56.3 5.9  40.6 33.0 7.6 

2004  62.0 56.0 6.0  40.4 32.6 7.7 

2005  64.8 59.1 5.8  45.2 37.3 7.9 

2006  66.6 60.7 5.9  48.0 39.8 8.2 

2007  66.7 60.6 6.1  47.6 39.1 8.5 

2008  68.7 62.7 6.0  48.8 40.2 8.6 

2009  66.7 60.5 6.1  45.6 37.2 8.4 

2010  68.7 62.6 6.1  48.1 39.4 8.7 

2011  69.4 63.3 6.2   49.4 40.5 8.9 

 

 

 

 

 

 

 

 

 



www.manaraa.com

47 

 

 

CHAPTER 3 

GENETICALLY ENGINEERED CROPS AND PESTICIDE USE IN U.S. MAIZE AND 

SOYBEANS 

 

Edward D. Perry, Federico Ciliberto, David A. Hennessy, and GianCarlo Moschini 

 

Abstract 

 

 The widespread adoption of genetically engineered (GE) crops has clearly led to changes 

in pesticide use, but the nature and extent of these impacts remain open questions. We study 

this issue with a unique, large and representative sample of plot-level choices made by U.S. 

maize and soybean farmers from 1998 to 2011. On average, adopters of GE glyphosate tolerant 

(GT) soybeans used 28% (0.30 kg/ha) more herbicide than non-adopters, adopters of GT maize 

used 1.2% (0.03 kg/ha) less herbicide than non-adopters, and adopters of GE insect resistant (IR) 

maize used 11.2% (0.013 kg/ha) less insecticide than non-adopters. When pesticides are 

weighted by the environmental impact quotient (EIQ), however, we find that (relative to non-

adopters) GE adopters used about the same amount of soybean herbicides, 9.8% less of maize 

herbicides, and 10.4% less of maize insecticides. In addition, the results indicate that the 

difference in pesticide use between GE and non-GE adopters has changed significantly over 

time. For both soybean and maize, GT adopters used increasingly more herbicides relative to 

non-adopters whereas adopters of IR maize used increasingly less insecticides. The estimated 

pattern of change in herbicide use over time is consistent with the emergence of glyphosate 

weed resistance.  
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Introduction 

 

One of the most salient developments in global agriculture in the past twenty years has 

been the introduction of genetically engineered (GE) crop varieties (1–5). In the United States, in 

2015, GE varieties accounted for 94% of planted soybean and 93% of planted maize (6). 

Adoption of this new technology was rapid: first introduced in 1996, GE soybean varieties 

embedding the glyphosate-tolerant (GT) trait have exceeded 80% of planted hectares since 2003. 

The share of planted maize using GE varieties—embedding GT and/or insect-resistant (IR) 

traits—has exceeded 80% since 2008. GT varieties are complementary inputs with glyphosate 

and their adoption has inevitably led to substitution away from other herbicides (7). 

Conversely, IR varieties can substitute for the use of insecticides, conceivably leading to lower 

pesticide use. Because pesticides have implications for human health and ecological diversity, 

factors that impact their use are of considerable policy interest (8–10). The nature and extent of 

the impact of GE variety adoption on pesticides use, however, remain open questions.  

 The prevailing consensus is that IR crops have significantly reduced insecticide use, but 

for herbicides the literature is divided (11, 12). Because most studies have lacked extensive 

survey data (11), a key issue has been how to impute counterfactual herbicide use for GE 

adopters. Some have used rates based on recommended conventional herbicide programs (13-

15). Such recommended rates, however, are much larger than average observed herbicide usage 

rates prior to the advent of GE crops (9,10), so that, unsurprisingly, this method suggests large 

reductions in herbicide use due to GE adoption. Studies that instead rely on observed herbicide 

usage rates have hitherto been limited to one or two years of data, and in the earlier stages of 

GE crop adoption (16-18). As such, the generality of their results is limited, and they cannot 

shed light on whether the impact of GE variety adoption on pesticide use has changed over 

time. In particular, there has been little data to assess whether the recent development of 

glyphosate resistant weeds has eroded whatever herbicide use benefits there may have been 

from GT crops (11).  
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 Our analysis relies on a unique, large farm-level dataset that spans the period 1998-2011. 

The data have been assembled annually by GfK Kynetec, a unit of a major market research 

organization that specializes in the collection of agriculture-related survey data. For each year, 

the samples are designed to be representative at the crop reporting district (CRD) level and 

include an annual average of 5,424 farmers for maize and 5,029 farmers for soybeans (Table S1). 

Based on these data, for each farmer we match the amount of pesticide used with the size of the 

corresponding plot, and the attributes of seed planted on that plot (including the type of GE 

traits embedded). Some farmers make more than one chemical/seed choice in any one year (i.e., 

they have more than one plot), and some (but not all) are observed for more than one year (Fig. 

S1). We are thus able to estimate the impact of GE crops on pesticide use by means of a fixed-

effects regression analysis with observations on a large number of individual plot-level choices. 

 

Results 

 

Data on pesticide use and GE crop adoption in U.S. soybeans and maize are illustrated 

in Fig. 1. For maize, the share of varieties containing the GT trait (whether alone or stacked with 

IR traits) is reported separately from the share of varieties embedding one or more IR traits 

(henceforth Bt maize) (Fig. 1A). The rate of use of insecticides applied to maize fell from 0.2 

kg/ha in 1998 to about 0.05 kg/ha in 2011, a 75% decrease (Fig. 1B). Since 1998, the most striking 

trend has been an increase in the use of glyphosate (Figs. 1C and 1D). By 2011, glyphosate 

dominated the soybean herbicide market with just over 80% of total herbicide applied, and in 

maize it accounted for nearly 40% of applied herbicide (a near twenty-fold increase from 1998). 

Increased glyphosate use came at the expense of other herbicides, though for soybeans there 

was also an increase in total herbicide use that began in 2007 and steadily rose through 2011.  

 The average rates in Fig. 1 are constructed by adding the amount of active ingredient 

(a.i.) of a large number of different chemicals. A concern with this (common) procedure is that 

the total weight associated with a bundle of heterogeneous chemicals is a poor measure of 
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environmental impact (19, 20). There is no agreed-upon superior procedure to aggregate 

heterogeneous pesticides. Following other studies (13, 14, 21), we use the Environmental Impact 

Quotient (EIQ) (22) as an alternative benchmark. Specifically, each a.i. is weighted by its EIQ 

value (23), and the resulting weighted sum is normalized so as to have the same overall mean as 

the unweighted total. Despite certain shortcomings (24), the EIQ’s appeal in our context is that it 

converts an array of attributes specific to each pesticide into a single value meant to summarize 

the toxicity of the chemical. In general, re-weighting chemicals by their EIQ score does not 

significantly affect overall trends in pesticide use, except for soybeans where, from 1998 to 2005, 

the herbicide rate slightly increased but declined in the EIQ-weighted amount (Fig. 1).  

 To further investigate the impact of GE variety adoption on pesticide use, we use our 

plot-level data to estimate the fixed-effects regression model outlined in the Materials and 

Methods section. We consider two different measures of the amount of pesticides per unit of 

land applied by growers: unweighted sum of all a.i. used (kg/ha), and EIQ-weighted sum. The 

model is estimated separately for soybean herbicides, maize herbicides, and maize insecticides. 

For soybeans, we have a total of 86,736 plot-level observations, whereas for maize we have a 

total of 134,264 observations.  

 To assess the average impact over the entire 1998-2011 period, the fixed-effects model is 

first estimated under the restriction that the impact of GE varieties is constant over time, i.e., 

,t tβ β= ∀  (Table 1; full results in Table S2). Overall, GT soybeans increased the quantity of 

herbicides used by 0.30 kg/ha (a 28% increase relative to the average use by non-GT growers 

over the entire period). When herbicides are weighted by their EIQ score, however, the 

coefficient of the adoption variable is not significantly different from zero, reflecting the 

relatively lower EIQ values for glyphosate. For maize, GT adopters used about 0.03 kg/ha less 

herbicide (a 1.2% decline relative to the average overall use by non-GT growers). In EIQ terms, 

the savings were larger at 9.8%, again reflecting the relatively low EIQ values for glyphosate. 

With respect to insecticides, GE adopters of IR varieties used about 0.013 kg/ha less insecticide 

than non-adopters (a 11.2% decline relative to the average overall use by non-Bt adopters), a 

difference that is essentially unaffected by EIQ weighting.  
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 The EIQ index is composed of three subcomponents: farmworker EIQ, which accounts 

for farmer exposure to dermal and chronic toxicity; consumer EIQ, which captures exposure to 

chronic toxicity and potential groundwater effects; and ecology EIQ, which captures the 

impacts of chemicals on fish, birds, bees, and beneficial arthropods (22). To gain further insight 

into the EIQ result in Table 1, we decompose the iG  coefficient into these three subcomponents. 

For all of soybean herbicides, corn herbicides, and maize insecticides, the farmworker and 

consumer components were lower on account of GE variety adoption. For the ecology 

component, maize herbicides and insecticides were improved by GE adoption, but for soybean 

herbicides, GE adoption had a detrimental effect (Table 2). Given that leaching potential and 

dermal toxicity are specific to the farmworker and consumer components, these results are 

broadly consistent with previous work that finds that herbicide usage patterns associated with 

GE varieties are beneficial (16, 18).  

  Next, we estimate the model where the tβ  parameters are allowed to vary over time. 

The full results are reported in Table S3; here we graph the estimated tβ  coefficients, along with 

their 95% confidence interval (Fig. 2). The impact of GT variety adoption on herbicide use has 

changed dramatically over time. In all periods, GT soybean adopters used more herbicide than 

non-adopters, and this difference increased considerably over time. By 2011, the amount 

applied by GT adopters was 0.66 kg/ha greater than non-adopters, an increase of 0.49 kg/ha 

from 1998. Moreover, although the total amount applied by a GT user was initially less harmful 

(as measured by the EIQ), from 2003 onward the reverse applied. The estimated trend for the 

impact of GT adoption for maize herbicides shows a similar pattern: over time GT adopters 

gradually employed more herbicide relative to conventional users, and by 2008 this difference 

was positive and statistically significantly greater than zero. Even when weighted by the EIQ 

impact, by 2011 GT adopters used more herbicide per hectare than non-adopters.  

 As for the impact of GE maize varieties embedding Bt traits, GE adopters used less 

insecticides than conventional growers for all years since 2000 (Fig. 2). The reduction in 

insecticide use attributable to the adoption of GE varieties increases (in absolute value) and 

becomes more significant (statistically) over time, possibly because of the diffusion of GE maize 



www.manaraa.com

52 

 

 

varieties with multiple Bt traits (e.g., conveying resistance to corn rootworm, in addition to the 

European corn borer). In interpreting these results, however, one should bear in mind the 

possibility that Bt adoption might reduce the need for insecticide use by non-adopters as well, 

via an area-wide suppression effect, a conjecture supported by some evidence (25, 26). 

 Whereas Fig. 2 illustrates the estimated differential pesticides use by GE adopters 

relative to non-adopters, it is also of interest to investigate the underlying time trend of 

pesticide use by non-adopters. This information is conveyed by the year-specific intercepts of 

the estimate model.  Fig. 3 graphs the estimated tα  coefficients (full results are in Table S3). For 

maize herbicides, there was a steady downward trend in herbicide use per hectare. Much of this 

downward trend can be explained by the decline of certain high-rate herbicides. For example, 

the active ingredient Metolachlor was supplanted by the lower-rate S-Metolachlor, and 

Cyanazine was phased out by the FDA (in cooperation with Dupont) by 2002 (Fig. S2). Other 

low-rate herbicides like Mesotrione also gained market penetration over the study period.  For 

soybean herbicides, a downward trend also occurred early on, but the trend inverted in 2006. 

For maize insecticides, the use by non-adopters declined steadily up to 2007, stabilizing 

thereafter. This is broadly consistent with stylized facts concerning insecticide use in U.S. 

agriculture (8-10). More specifically, even before the introduction of Bt crops, there was a trend 

towards products with lower application rates. One class of low-rate insecticides that has been 

widely adopted recently are neonicotinoids, which are applied in the form of seed treatments. 

By 2011, our data indicate that nearly 50% of applied weight in insecticides took the form of 

seed treatments (Fig. 1B). 

 The robustness of the results obtained from the baseline model was investigated by 

considering several variations, including: the alternative where farmers’ heterogeneity is 

instead represented by a random-effect model  (Table S4); explicit accounting for the expansion 

of no-tillage practices (Table S5); explicit representation of plot-specific weed pressure (Table 

S6); accounting for selection bias due to the possible role of un-observed plot-level 

heterogeneity (Tables S7 and S8); and omission of choices associated with zero pesticide use 

(Tables S9 and S10). Details for each of these variations, and additional discussion, are provided 
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in the Supplementary Materials. Overall, the results of interest are essentially unchanged under 

these alternative specifications. 

 A clear result that emerges from our analysis is the change in differential herbicide use 

by GT adopters relative to non-GT adopters over time. What are the sources of such significant 

and persistent upward trends? Explanations such as the expansion of no-tillage practices, or 

unobserved plot-level heterogeneity, can be ruled out on the basis of the alternative 

specifications noted above. Part of the trend can be explained simply by the fact that non-

adopters, particularly in maize, transitioned to lower-rate herbicides. But this cannot explain the 

sharp increase in later periods (specifically, 2007-2011). One explanation not ruled out by our 

investigations concerns the possible role of weed resistance. This is of particular interest, as 

glyphosate weed resistance has recently emerged as a significant concern (27–29). With GT 

crops, growers can apply glyphosate multiple times in a relatively short time span. 

Furthermore, the simultaneous availability of GT soybeans and GT maize has led to maize-

soybean rotations that use glyphosate exclusively, thus significantly reducing the degree of 

chemical heterogeneity faced by weed populations (an important factor for preventing the 

emergence of herbicide tolerance) (29).  

 Making a direct link between our results and weed resistance is difficult because the 

data do not contain a plot-level variable that correlates with glyphosate weed resistance. To 

pursue an indirect inference route, however, we decompose the results in Fig. 2 by estimating 

the fixed-effects regressions separately for glyphosate and non-glyphosate herbicides. The 

underlying rationale for this procedure is that one of the early indicators of resistance would be 

a relative increase in the use of non-glyphosate herbicides by GE adopters. We find that for both 

soybeans and maize there has been a significant increase in non-glyphosate herbicides applied 

by GT adopters (relative to non-GT users) (Table S11). In soybeans, a GT adopter in 1998 used 

about 0.71 kg/ha less in non-glyphosate herbicides relative to a conventional user; by 2011, the 

difference was just 0.48 kg/ha (Fig. 4A). In maize, GT adopters went from using 1.31 kg/ha less 

in non-glyphosate herbicides in 1998 to only 0.32 kg/ha less in 2011 (Fig. 4B). The role of 

glyphosate weed resistance is also supported by data on the fraction of GT plots that relied 
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exclusively on glyphosate for weed control. Up to 2006, more than 70% of land planted with GT 

soybeans, and more than 40% of land planted with GT maize, were treated exclusively with 

glyphosate. But since then, these rates have dropped significantly, reaching lows of 41% 

(soybeans) and 19% (maize) (Fig. 4C). 

 

Discussion and Conclusion 

 

The role of GE crops in shaping the patterns of pesticide use remains a controversial 

topic. Over the period 1998-2011, our results show that GE variety adoption reduced both 

herbicide and insecticide use in maize, while increasing herbicide use in soybeans. Weighting 

pesticides by the EIQ, however, lowers the difference in herbicide use by GT soybean adopters 

(such that the estimated average impact over the study period is statistically indistinguishable 

from zero). Adoption of Bt maize, on the other hand, is associated with a clearer decline in 

insecticide use. This is broadly consistent with previous work (11-13, 17), although we find a 

smaller reduction. For herbicides, our results confirm the critical role of increased glyphosate 

use, but again we find less optimistic conclusions than other studies (13-15). These differences 

not only reflect the data that we use, but also the methodology of our study: unlike much of the 

existing work, our analysis relies on directly observed herbicide use for plots using GE and non-

GE varieties, rather than arbitrarily constructed counterfactual use rates.  

 The richness of the data that we use, together with the methodology that we propose—

with year-specific GE adoption effects, while controlling for the possible confounding effects of 

omitted variables via farmer fixed effects, year fixed effects, and regional trends—also permit us 

to characterize the time path of the GE variety adoption effects. Interestingly, we find clear 

evidence of increasing herbicides use by GT variety adopters over time for both soybeans and 

maize, a finding that we attribute in part to the emergence of glyphosate weed resistance. No 

such pattern appears for maize insecticide use over time, consistent with the evidence that non-

Bt maize refugia have been broadly effective as a means to prevent the onset of pest resistance 

(30).   
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Materials and Methods 

 

Data 

The data used in this study come from AgroTrak®, a large, farm-level commercial 

dataset assembled by GfK Kynetec. Iowa State University acquired limited access to these 

proprietary data via a marketing research agreement with GfK Kynetec. Each year GfK Kynetec 

conducts surveys throughout the United States of randomly sampled farmers about decisions 

pertaining to seed and pesticide choices. The samples constructed for AgroTrak® are 

representative at the crop reporting district (CRD) level. Each CRD is a multi-county area 

identified by the National Agricultural Statistics Service of the USDA (Fig. S3). Agrotrak® is 

widely considered to be the most comprehensive source for these data and has been used in 

several other studies (31-33). 

 The subset of Agrotrak® utilized in this analysis pertains to pesticide use by U.S. 

soybean and maize farmers during the 14-year period 1998-2011. Over this period, on average 

the surveys included 5,029 farmers per year for soybeans and 5,424 farmers per year for maize. 

For each crop, respondents indicate how much land is planted, with what seed trait, and the 

type of tillage used. A grower’s land planted with the same seed trait (e.g., GT soybeans) and 

with the same tillage method (conventional, conservational or no till) defines a “plot” for the 

purpose of our analysis. Over the 14-year period, we identify a total of 86,736 plots for 

soybeans, and a total of 134,264 plots for maize. For each of these plots, Agrotrak® provides 

sufficient information to reconstruct the amount of all commercial pesticides products applied 

by the farmer. By utilizing the table providing each product’s a.i., also in the dataset, we 

calculate the total amount of pesticides used on each plot. 

 We use two measures of pesticide use for each plot. The first measure is the total amount 

of all active ingredients used on the plot. Specifically, if k
iQ  denotes the quantity of commercial 

products k  applied on plot i , with a per-unit content k
ja  of a.i. j , and iL  denotes the land size 

of plot i , our first plot-level measure of pesticide use (kg/hectare) is defined as 
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  1A k k
i i jk j

i
y Q a

L
= ∑ ∑          (25) 

The second measure of total pesticide use per plot is meant to address the composition 

heterogeneity of commercial pesticides by weighing active ingredients by their EIQ values. The 

latter are obtained from the list in (23), updated in 2012. Specifically, if jE  is the EIQ value 

associated with a.i. j , the EIQ measure of plot-level pesticide use is defined as 

E k k
i i j jk j

i
y Q E a

L
κ

= ∑ ∑        (26) 

where κ  is a normalizing constant chosen such that E
iy  and A

iy have the same overall mean 

(this facilitates comparison of regression coefficients obtained from these two alternative 

measures of pesticide use). 

 Table S1 and Fig. S1 contain some summary statistics of the structure of the AgroTrak® 

data used in this study. An important feature of the GfK dataset is that it contains repeated 

observations across time for a subset of the growers. Of the 38,693 farmers in the sample, over 

50% were sampled two or more years, and more than 30% were sampled for at least three years. 

This is a key element that permits us to estimate a model that controls for the possible impact of 

unobserved farmer-level heterogeneity. 

Model 

The main results of the analysis are based on the following fixed-effects regression 

model, which is estimated separately for herbicides and insecticides and for each of the two 

crops of interest (maize and soybeans):  

 [ ] [ ] [ ] [ ] [ ]i t i t i i r i t i f i iy G T eα β γ φ= + + + +   ,     1, 2,...,i N=   (27) 

where i  indexes the plot, N  is the total number of observations (thus, 86,736N =  for soybeans 

and 134,264N =  for maize), [ ]t i  identifies the year in which data for plot i  are observed, [ ]r i  

denotes the region (i.e., the CRD) of the plot and [ ]f i  indicates the farmer to whom the plot 

belongs (the notation follows (34)). As noted, we consider two different measures for the 

dependent variable, and thus either A
i iy y=  or E

i iy y=  . The main independent variable of 
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interest, iG , is a binary variable that equals one if plot i was planted with a GE variety, and zero 

otherwise. For soybean and maize herbicides, 1iG =  if the variety embeds a GT trait, and for 

maize insecticide 1iG =  if the variety contained one or more IR traits (i.e., Bt maize). The year-

specific tβ  parameters, our main focus, capture the impact of adopting GE crops on pesticide 

use. This impact is estimated relative to the underlying benchmark of pesticide use on non-GE 

plots captured by the time fixed effects tα . The remaining terms are grower-specific effects, 

denoted by fφ , and CRD-specific time trends, denoted by r tTγ  (here tT  is a linear time trend, 

suitably demeaned so that the estimated tα  can be interpreted as the average use of pesticide 

on non-GE plots).   

The identifying assumption for estimation is that—conditional on the fixed effects and 

regional trends— iG  is exogenous with respect to ie , that is [ ] 0i iE e G = . To illustrate the 

statistical basis of this assumption, consider the simplest possible specification of time-varying 

GE-adoption effects:  

,   ,[ ] 1,...,i t i i iy G u i Nδ β= + + =
 

where i  indexes the plot and N  is the total number of plots in the sample (the notation [ ]t i  

signifies that observation of plot i  pertains to year t ), and iu  is the error term. Unbiased 

estimation of the tβ  parameters of interest would require the mean independence condition

( ) 0i iE u G = . This is likely to be violated because the term iu  may reflect unobserved variables 

that are correlated with iG . To deal with this problem, our strategy is to decompose the error 

term as follows: 

 ( ) ,[ ] [ ] [ ] [ ]i f i t i r i t i iu T eφ α δ γ≡ + − + +   

where [ ]f iφ  is a time-invariant farmer fixed effect, [ ]t iα  is a time-specific fixed effect, [ ] [ ]r i t iTγ  is a 

CRD-specific time trend, and ie  is a residual error term. The term [ ]f iφ  captures time-invariant 

unobserved farm-level variables (such as, for example, a grower’s education, location, and 

attitude towards the environment). The terms [ ]t iα  capture the impact of variables that may 
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affect pesticide use but that can be safely presumed constant in a given year (such as herbicide 

prices and crop output prices). The [ ] [ ]r i t iTγ  capture the effect of possible location-specific 

variables that change over time. By using the panel structure of our data to explicitly estimate 

these terms, we then only require the more plausible assumption ( ) 0i iE e G = . Because the ie  

terms now reflect variables that are plot-specific and have no trend at the regional level over 

time, this assumption seems reasonable. We note that this approach is common in comparable 

existing analyses (e.g., Kathage and Qaim, PNAS 2012). Moreover, we report a number of 

sensitivity analyses in which we investigate how the [ ]t iβ  estimates change when additional 

plot-specific variables are added to the model (such as the type of tillage used or the type of 

weed targeted). Overall, the estimates are largely unaffected by these changes (see tables S5-S9).  
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Fig. 1. GE variety adoption and pesticide use, maize and soybeans in the United States, 1998-

2011. (A) Adoption rates of glyphosate tolerant (GT) soybeans, GT maize and Bt maize 

(embedding one or more genes from Bacillus Thuringiensis). (B) Insecticide use in maize, kg/ha 

and Environmental Impact Quotient (EIQ) weights. (C) Herbicide use in soybeans, kg/ha and 

EIQ weights. (D) Herbicide use in maize, kg/ha and EIQ weights. Adoption rates and a.i. use 

(kg/ha) are reported in tables S12 and S13 

 

 

 

 

  

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

19
98

19
99

20
00

20
01

20
02

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

A

Bt Maize
GT Maize
GT Soybeans

0

0.05

0.1

0.15

0.2

0.25

19
98

19
99

20
00

20
01

20
02

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

B
Seed treatment kg/ha

Other a.i. kg/ha

EIQ

0.0

0.3

0.6

0.9

1.2

1.5

1.8

19
98

19
99

20
00

20
01

20
02

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

C
Other a.i. kg/ha

Glyphosate kg/ha

EIQ

0

0.5

1

1.5

2

2.5

3

19
98

19
99

20
00

20
01

20
02

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

D
Other a.i. kg/ha

Glyphosate kg/ha

EIQ



www.manaraa.com

60 

 

 

 

 
 

 
 

-0.25

0

0.25

0.5

0.75
19

98

19
99

20
00

20
01

20
02

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

A
GT Impact (kg/ha)

GT Impact (EIQ)

-1.1

-0.9

-0.7

-0.5

-0.3

-0.1

0.1

0.3

0.5

19
98

19
99

20
00

20
01

20
02

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

B

GT Impact (kg/ha)

GT Impact (EIQ)



www.manaraa.com

61 

 

 

 
 

Fig. 2. Estimated tβ  parameters from the fixed-effects model. (A) Year-specific impacts of 

glyphosate tolerant (GT) soybeans on herbicide use, kg/ha and Environmental Impact Quotient 

(EIQ) weights. (B) Year-specific impacts of GT maize on herbicide use, kg/ha and EIQ weights. 

(C) Year-specific impacts of Bt maize on insecticide use, kg/ha and EIQ weights. For all panels, 

vertical bars denote 95% confidence intervals.  
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Fig. 3. Estimated tα  parameters from the fixed-effects model. (A) Year-specific herbicide use 

by non-GT soybean adopters, kg/ha and Environmental Impact Quotient (EIQ) weights. (B) 

Year-specific herbicide use by non-GT maize adopters, kg/ha and EIQ weights. (C) Year-specific 

insecticide use by non-Bt maize adopters, kg/ha and EIQ weights. For all panels, vertical bars 

denote 95% confidence intervals.  
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Fig. 4. Decomposition of year-specific impacts of GE variety adoption. (A) Differences in 

herbicide use between glyphosate tolerant (GT) soybean adopters and non-adopters, kg/ha, 

glyphosate (blue bars) and all other herbicides (red bars). (B) Differences in herbicide use 

between GT maize adopters and non-adopters, kg/ha, glyphosate (blue bars) and all other 

herbicides (red bars). (C) Fraction of hectares planted to GT varieties that use exclusively 

glyphosate.  
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Table 1. Estimated impact of GE varieties on pesticide use, average impact over 1998-2011 

(assumes ,t tβ β= ∀ ).  N = number of observations. Standard errors (in parentheses) are 

clustered at the farmer level. The model includes time fixed effects, CRD-specific time trends 

and individual (farmer) fixed effects. * p < 0.05, ** p < 0.01, *** p < 0.001 .   

 

 Soybean Herbicides Maize Herbicides Maize Insecticides 

 a.i. 

kg/ha 

EIQ 

kg/ha 

a.i. 

kg/ha 

EIQ 

kg/ha 

a.i. 

kg/ha 

EIQ 

kg/ha 

iG   0.3021*** 0.0045 -0.0329* -0.2590*** -0.0129*** -0.0122*** 
(0.0097) (0.0122) (0.0150) (0.0156) (0.0014) (0.0014) 

N 86,736 86,736 134,264 134,264 134,264 134,264 

R2 0.067 0.028 0.022 0.027 0.039 0.051 

 

 

Table 2. Estimated impact of GE varieties on the farmer, consumer and ecology components 

of EIQ-weighted pesticide use, average impact over 1998-2011 (assumes ,t tβ β= ∀ ).  N = 

number of observations. Standard errors (in parentheses) are clustered at the farmer level. The 

model includes time fixed effects, CRD-specific time trends and individual (farmer) fixed 

effects. * p < 0.05, ** p < 0.01, *** p < 0.001 . 

 

 Soy Herbicide EIQ Maize Herbicide EIQ Maize Insecticide EIQ 

 Farmer Consumer Ecology Farmer Consumer Ecology Farmer Consumer Ecology 

iG  -0.0081*** -0.0281*** 0.0407*** -0.0301*** -0.0534*** -0.1755*** -0.0019*** -0.0003*** -0.0100*** 

 (0.0021) (0.0013) (0.0091) (0.0024) (0.0017) (0.0116) (0.0003) (0.0001) (0.0011) 

N 86,736 86,736 86,736 134,264 134,264 134,264 134,264 134,264 134,264 

R2 0.034 0.051 0.027 0.029 0.048 0.025 0.041 0.027 0.053 
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Content of this Appendix: 

Supplementary Text 

Fig. S1. Number of Years Sampled for Growers in AgroTrak® dataset 
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Supplementary text 

The AgroTrak® data 

The data used in this study comes from AgroTrak®, a large, farm-level commercial dataset 

assembled by GfK Kynetec. Iowa State University acquired limited access to these proprietary 

data via a marketing research agreement with GfK Kynetec. Each year GfK Kynetec conducts 

surveys throughout the United States of randomly sampled farmers about decisions pertaining 

to seed and pesticide choices. The samples constructed for AgroTrak® are representative at the 

crop reporting district (CRD) level. Each CRD is a multi-county area identified by the National 

Agricultural Statistics Service of the USDA (Fig. S2). Table S1 and Fig. S1 contains some 

summary statistics of the structure of the AgroTrak® data used in this study. An important 

feature of the GfK dataset is that it contains repeated observations across time for a subset of the 

growers. Of the 38,693 farmers in the sample, over 50% were sampled 2 or more years, and 

more than 30% were sampled for at least 3 years.  

 Agrotrak® is widely considered the most comprehensive source for pesticide use data 

and has been used in several other studies, including Gangwal et al. (31), Thelin and Stone (32), 

and Mitchell (33). Concerning farmers’ use of GE varieties, also documented in Agrotrak® , we 

note that estimates of GE crop variety adoption have been independently reported by the USDA 

(based on National Agricultural Statistics Service surveys) since 2000 (6, 7). This provides the 

opportunity for an additional external validation of some of the proprietary data used in this 

study. To do so, we compared state-level GE crop adoption rates reported by the USDA to state-

level GE crop adoption rates computed from AgroTrak®. In the manuscript we use adoption 

rates for varieties that contain the GE trait(s) of interest (e.g., varieties that contain the GT trait). 

Some of those varieties may incidentally contain other GE traits as well, e.g., Bt traits. The 

USDA does not report adoption rates for maize varieties that have GE herbicide tolerance, 

whether alone or stacked with another GE trait (e.g., Bt). Rather, they report the adoption rate 

for maize varieties with GE herbicide-tolerance only. They also report the adoption rates for all 

GE varieties. As a result, we compute what we believe to be the comparable adoption rates from 
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the GfK data. Table S14 reports the correlation between these two types of adoption rates at the 

state level for US maize and soybeans. Overall, they are highly correlated. 

Literature review: GE variety adoption and pesticide use 

Given the breadth of the literature on GE crops and pesticide use, this section only focuses on 

those studies most relevant to our analysis. Somewhat more comprehensive literature reviews 

can be found in Carpenter (11), Klümper and Qaim (12), and Qaim (35). We consider the prior 

literature from three different perspectives: (i) their findings, (ii) the data used, and (iii) the 

methods they employ. The literature relevant to our analysis for maize insecticides is discussed 

first. 

 Because Bt crops do not relate to any one particular insecticide, conclusions about their 

environmental impact are fairly straightforward: if they reduce insecticide use the environment 

is the better for it (and vice versa). Overall, most studies have found that Bt crop adopters use 

less insecticide than non-adopters (11-13, 17, 35, 36). Drawing on large number of studies 

Klumper and Qaim (12) find that these savings are on average 37%. A less studied issue has 

been the potential benefits reaped by non-Bt growers from Bt adopters. Results in Hutchison et 

al. (25) reveal that non-Bt growers benefited from Bt adopters through the associated 

suppression of the European Corn Borer population. Whether this has led to a reduction in 

insecticide use, however, has not been studied. A basic statistical trend in favor of this effect is 

that non-Bt maize adopters significantly reduced insecticide use as the adoption of Bt maize 

rose (7).  

 The complementary relation between GT crop varieties and glyphosate use implies a 

more complex characterization with respect to environmental impact. At the initial stages of 

commercialization of GT crops the basic question could be reduced to whether the increase in 

glyphosate use exceeded the decrease in a number of more narrow-spectrum herbicides, and 

whether that net change was better or worse for the environment. Some early studies found that 

adopters of GT soybeans and/or GT maize used less herbicide than non-GT adopters (see Table 

4 in Fernandez-Cornejo et al. (7)). In more recent years, however, that trend seems to have 

reversed with GT growers typically using more herbicide in terms of weight (37). By most 
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environmental measures, however, that greater amount of herbicide – in particular glyphosate – 

was an improvement over the lesser amount used by non-adopters (16, 18, 38). Whether this has 

remained true more recently (beyond 2006) has been less studied. Moreover, the question has 

been complicated by the emergence of glyphosate weed resistance, which has brought back the 

use of some previously abandoned, narrow-spectrum herbicides (37). More recently, Benbrook 

(39) finds that GT soybeans are sprayed with significantly more herbicide than non-GT 

soybeans; however, certain limitations of these findings have been noted by Brookes, Carpenter, 

and McHughen (40). In brief, Benbrook (39) relies on USDA data that does not disaggregate 

pesticide use by GE trait, and thus his findings critically depend on somewhat arbitrary 

assumptions about how that use is broken down.    

 The most widely cited source on this issue has been a series of studies conducted by 

Brookes and Barfoot, the most recent of which is Brookes and Barfoot (13). These studies are of 

particular interest to our analysis because they use some of the same data that we employ.  In 

general, they report significant reductions in herbicide use from GE crops, even during some of 

the more recent periods in which glyphosate weed resistance has reportedly intensified. We 

note two important limitations of their analysis. First, they do not control for unobserved 

heterogeneity across farmers: in general, they compare unconditional annual average herbicide 

usage rates between GE and non-GE adopters. Second, the procedure they use to compute those 

average rates in part relies on strong assumptions about counterfactual pesticide use. For years 

during which non-GE adopters comprised less than 50% of the population, rather than use 

observed herbicide usage rates by non-GE adopters for the counterfactual they use the rates 

implied by various recommended conventional herbicide programs that would achieve a level 

of weed control similar to that in GT crops (this method is also used, e.g., in Kleter et al. (14) and 

Johnson, Strom, and Grillo (15)). As we note in the paper, the usage rates implied by these 

programs significantly exceed average herbicide rates observed prior to the GE era (based on 

USDA data). The discrepancy between the recommended rates and the historically observed 

rates is likely due to the fact that the profit maximizing amount of herbicides for a non-GT user 

is less than the amount that would achieve the same level of weed control for a GT crop.  In 
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general, the appropriate counterfactual should be one in which the adoption of GT crops does 

not exert any indirect or direct influence on the choice (otherwise it would be part of the effect).  

 With regard to data, most survey-based studies use samples that are restricted to one or 

two years prior to 2006 (16–18, 37, 39, 41). Exceptions are Benbrook (39) and Brookes and 

Barfoot (13), but both of these studies conduct analyses that are not at the farm level. As a result, 

there has not yet been a farm-level, survey-based study that extends from the beginning of the 

GE crop era into the early stages of glyphosate weed resistance (Kathage and Qaim (3) conduct 

a multi-year farm-level analysis of Bt crops in India, but pesticide use is not one of the variables 

they consider).  

 The EIQ is one among several methods to aggregate and/or measure the environmental 

impact of pesticides. Various studies have employed alternative procedures or measures (16, 18, 

41-44). Two of these aggregation procedures, however, do not explicitly capture external 

environmental impacts (41, 43), and were thus not considered in this study. Among the 

remaining studies, Nelson and Bullock (42) use the LD50  dose for rates, Wossink and Denaux 

(18) use leaching potential, and Qaim and Traxler (16) break herbicides down by toxicity class. 

Each of these measures is to some extent captured in the various components that make-up the 

EIQ (e.g., leaching potential and dermal toxicity are in consumer and farmworker components), 

and depending on the analysis, one may be more desirable to use than another. Below we show 

and discuss how some of these finer measures are impacted by GE crops. 

Details for the results reported in the main text  

Table S2 contain the full set of estimates for Table 1, Table S3 contains the full set of estimates 

for Fig. 2 and Fig. 3, and Table S11 contains the full set of estimates for Fig. 4A and Fig. 4B.  

Supplementary Results 

Individual (farmer) random effects 

Table S4 contains results for the same specification as in Table S2 (which provides details for the 

results of Fig. 2 in the paper), but with the farmer-specific fixed effects replaced by random 

effects. With individual fixed effects, growers who are sampled only once and with only one 
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plot (this accounts for 13.5% of the observations for soybeans and 6.9% of the observations for 

maize) do not contribute to estimating the tβ  coefficients. With the random effects model, all 

observations contribute to estimating the tβ  coefficients. The limitation of random effects is that 

if they are correlated with the observables then the estimated coefficients are not consistent.  

Comparison of Table S4 with Table S2 indicates that the estimated tβ  coefficients are hardly 

affected by the choice of how one models individual heterogeneity. However, the Hausman 

test, which compares the difference in coefficient estimates for all variables (also reported in 

Table 4) ,rejects the random effects model in favor the fixed effects model.  

Herbicide prices 

The results provided in Table S11 indicate that both GT and non-GT adopters increased their 

use of glyphosate over time. These trends can in part be explained by changes in herbicide and 

crop output prices over time (Fig. S4). In 2000, Monsanto’s patent on glyphosate expired and as 

a result glyphosate prices fell relative to non-glyphosate prices from 2001 onward. In addition, 

the commodity boom that began in the mid-2000s led to rising maize and soybean prices, which 

in turn encourage the use of yield-enhancing inputs like glyphosate.  

No tillage 

An additional important variable that could potentially confound our estimate for the impact of 

GM crops on pesticide use, is the adoption of no tillage (NT). Previous work has shown that NT 

and GE crops are complementary practices (45). NT may also use more herbicide relative to a 

conventional tillage operation. Thus, the greater use of herbicides observed for GE adopters 

may in part be attributable to the fact that they are more likely to adopt no tillage (from 1998-

2009, no-till adoption increased from about 32% to 53% of land). Table S5 reports the results for 

soybean and maize herbicides when a binary variable for no tillage is included. We find that, 

although no tillage significantly increased herbicide use – by about 0.16 kg/ha in both maize and 

soybeans – it does not significantly alter the coefficients for the GE trait binary variable iG .  
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Weed pressure and plot heterogeneity 

A possible alternative explanation for the estimated pattern reported in Fig. 2 of the main paper 

is that the quantity of herbicides applied on a given plot is affected by weed pressure, and the 

latter may be related to the farmer’s decision to adopt a GE variety. Insofar as weed pressure on 

plots belonging to the same farmer is highly correlated (e.g., it is a time-invariant attribute of 

the given farmer’s location), the inclusion of a farmer-specific fixed effect in the estimating 

model provides a measure of control. However, insofar as there is additional unobserved plot-

specific heterogeneity, the estimated coefficients on the GE variable iG  may reflect the impact 

of an implicit plot selection process. 

 To explore this possibility, we first investigate the sensitivity of our results to the 

inclusion of a set of control variables that capture the types weeds targeted by growers on each 

plot. Table S15 reports descriptive statistics for some major targeted weeds, separately for 

soybeans and maize, and for GT adopters and non-GT adopters. For the most part, there are no 

major differences in the frequency of weeds targeted between GT-adopters and non-GT 

adopters. To systematically explore the effects of weed pressure in the fixed effects regression 

model we add a set of indicator variables, where each variable takes the value one if the 

corresponding weed is targeted on that plot (and value zero otherwise). The results of this 

extended model are reported in Table S6. It turns out that the farmer’s reporting of targeting 

each one of these major weeds does increase the amount of herbicides applied to that plot, for 

both crops and for all weeds. The estimated tβ  that capture the differential impact of GE 

variety adoption, however, are robust to the inclusion of these weed pressure control variables.  

 Another way to investigate the impact of plot-specific heterogeneity is to estimate the 

fixed effects model on the subset of growers that plant either exclusively GT or exclusively non-

GT varieties (i.e., exclude all growers that plant both GT and non-GT varieties within a given 

year). This procedure effectively eliminates potentially confounding plot specific factors.  The 

results of this estimation are presented in tables S7 and S8. Qualitatively, the results are largely 

unchanged, but there is a small change in magnitude to the estimates. For herbicides, the GT 
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coefficient(s) are slightly smaller in both cases (they becomes less positive for soybeans and 

more negative for maize).  

 We can also test for the presence of an implicit plot selection process by using a simple 

model to generate predictions about the dynamics of herbicide use and compare those 

predictions to what we observe in the data. The following analysis illustrates.  

 Suppose that there is a continuum of plots, each of which is indexed by the degree of 

weediness [ , ]w w w∈ , where w  is distributed according to a continuous distribution function 

( )F w . Higher values of w  represent higher weed pressure. Suppose that this factor was the 

only element in determining the sequence of GT variety adoption, and let [0,1]z∈  denote the 

GT adoption rate. Then, for a given adoption rate ˆ [0,1]z∈  there is a weediness threshold 

ˆ [ , ]w w w∈  such that all plots with ˆw w≥  adopt GT varieties, and plots with ˆw w<  adopt 

conventional varieties. The threshold ŵ  is determined by ˆ ˆ( ) 1F w z= − . Next, suppose that a 

plot’s herbicide application rate depends on both the type of crop (GT or conventional) and the 

degree of weediness, and represent these amounts by ( )Ga w  and ( )Ta w  for GT and 

conventional (traditional) varieties, respectively. 

 In this setting we are interested in computing the expected (average) herbicide rate for 

conventional and GT varieties for any given adoption rate ẑ . Let ˆ( )Gy z  and ˆ( )Ty z  denote these 

average application rates. Then: 

ˆ
ˆ( ) ( ) ( )

w

G G
w

y z a w dF w= ∫  

ˆ

ˆ( ) ( ) ( )
w

T T
w

y z a w dF w= ∫  

The coefficients tα  from the fixed effect regression model in the main paper essentially estimate 

the difference  ˆ ˆ ˆ( ) ( ) ( )G Tz y z y z∆ ≡ −  as the term t iftGα . How the foregoing conjectured adoption 

driver impacts these estimates cannot be established without further assumptions on the shape 

of the functions ( )Ga w  and ( )Ta w , and of the distribution function ( )F w . To illustrate, suppose 

that ( )F w  is a uniform distribution, such that ˆ ˆ1w w z= + −  , and that  
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 ( )G G Ga w wα β= +  

 ( )T T Ta w wα β= +  

Then: 

( )
ˆ

1ˆ( )
ˆ( )

w

G G G
w

y z w dw
w w

α β= +
−∫  

( )
ˆ

1ˆ( )
ˆ( )

w

T T T
w

y z w dw
w w

α β= +
−∫  

Performing the integration: 

1ˆ ˆ( ) ( )
2G G Gy z w wα β= + +  

1ˆ ˆ( ) ( )
2T T Ty z w wα β= + +  

and 

( ) ( ) ( ) ( ) ( )1 1 1ˆ ˆ ˆ ˆ( ) ( ) ( )
2 2 2G T G T G T G T G Tz w w w w w w wα α β β α α β β β β∆ = − + + − + = − + − + −  

Several cases are possible, depending on the relative magnitudes of the intercepts iα  and the 

slopes iβ  , i=G,T.  

Testable Implication: Regardless of the relative magnitudes of parameters iα  and iβ  , { , }i G T∈ , 

it is clear that, once the adoption rate ẑ  stops increasing, such that ŵ  is constant, then the 

difference in herbicide quantity used on GT and conventional plots, ˆ( )z∆ , should converge to a 

constant. This suggests a testable implication for the estimated fixed effects regression model. 

For soybeans, in particular, the adoption rate ẑ  has stabilized in the last part of the sample (for 

the last six years, 2006-2011, this rate has hovered between 94% and 97%). Hence, if the process 

being investigated was the primary explanation for the estimated pattern reported in Fig. 2, we 

should expect the estimated parameters tα  to be constant over these years. This null hypothesis 

0 : tH α α=  for all [2006,2011]t∈ , however, is rejected by the appropriate F statistics (F-statistic 

of 4.90, p-value = 0.0002).  
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Additional implication – Special case 1: G Tα α=  and G Tβ β β= ≡ . In this case, the average 

herbicide applications on GT is greater than that on conventional variety plots, i.e., 

( )1ˆ( ) 0
2

z w wβ∆ = − > , which would explain the paper’s finding for soybeans reported in Table 

1. In this case, however, the difference does not change as the adoption rate changes, which is 

contrary to the paper’s finding that ˆ( )z∆  increases with time (which is strongly positively 

correlated with the adoption rate) for both soybeans and maize, as reported in Fig. 2. 

Additional Implication – Special case 2: 0G Tα α= =  and G Tβ β≥ . In this case, again, the 

average herbicide applications on GT is greater than that on conventional variety plots, which 

would explain the paper’s finding for soybean reported in Table 1. In this case, however, the 

difference ( ) ( )1 1 ˆ
2 2G T G Tw w wβ β β β− + −  is increasing in ŵ , and therefore decreasing in the 

adoption rate ẑ . Hence, over time, as adoption ẑ  increases we should expect that the difference 

in average herbicide rates decreases, which again is contrary to the pattern uncovered for both 

soybean and maize, as reported in Fig. 2. 
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Fig. S1 – Number of Years Sampled for Growers in AgroTrak® dataset 
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Fig. S2.  Maize Herbicide Use by non-GT Adopters (selected herbicides, kg/ha) 

 

 

  

0

0.2

0.4

0.6

0.8

1

1.2

19
98

19
99

20
00

20
01

20
02

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

Acetochlor Atrazine Cyanazine

Metolachlor S-Metolachlor Glyphosate



www.manaraa.com

83 

 

 

 

 

Fig. S3. Crop Reporting Districts (CRD), National Agricultural Statistics Service,  

U.S. Department of Agriculture. 
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Fig. S4. Trends in Glyphosate and Expected Crop Output Prices, 1998-2011 

 
 

Table S1. Summary Statistics for AgroTrak® Dataset 

 Annual Averages 

 Maize Soybeans 

Number of growers 5,424 5,029 

Number of plots per farmer 1.77 1.23 

Number of CRDs 248 197 

Number of states 41 29 

Number of herbicide a.i. 48 42 

Number of insecticide a.i. 27 - 
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Table S2. Full Results Corresponding to Table 1 in the Main Text  

 Soybean Herbicides Maize Herbicides Maize Insecticides 
 a.i. kg/ha EIQ kg/ha a.i. kg/ha EIQ kg/ha a.i. kg/ha EIQ kg/ha 
Gt 0.3021*** 0.0045 -0.0329* -0.2590*** -0.0129*** -0.0122*** 

(0.0097) (0.0122) (0.0150) (0.0156) (0.0014) (0.0014) 
       1999 -0.1314*** -0.1569*** -0.2692*** -0.2731*** -0.0265*** -0.0368*** 
 (0.0161) (0.0197) (0.0302) (0.0314) (0.0064) (0.0075) 
       2000 -0.0946*** -0.1156*** -0.3318*** -0.3458*** -0.0267** -0.0417*** 
 (0.0171) (0.0212) (0.0327) (0.0335) (0.0082) (0.0090) 
       2001 -0.1029*** -0.1423*** -0.3925*** -0.3924*** -0.0485*** -0.0652*** 
 (0.0175) (0.0213) (0.0329) (0.0339) (0.0074) (0.0086) 
       2002 -0.1419*** -0.2218*** -0.4725*** -0.4817*** -0.0486*** -0.0674*** 
 (0.0178) (0.0212) (0.0343) (0.0352) (0.0092) (0.0098) 
       2003 -0.0819*** -0.1791*** -0.4910*** -0.5078*** -0.0575*** -0.0731*** 
 (0.0188) (0.0218) (0.0355) (0.0366) (0.0084) (0.0097) 
       2004 -0.0780*** -0.1868*** -0.5340*** -0.5382*** -0.0796*** -0.1024*** 
 (0.0185) (0.0218) (0.0362) (0.0372) (0.0083) (0.0096) 
       2005 -0.0661*** -0.1760*** -0.5603*** -0.5570*** -0.0928*** -0.1158*** 
 (0.0191) (0.0222) (0.0386) (0.0394) (0.0083) (0.0094) 
       2006 -0.1246*** -0.2382*** -0.5583*** -0.5691*** -0.1265*** -0.1478*** 
 (0.0193) (0.0223) (0.0398) (0.0410) (0.0083) (0.0093) 
       2007 -0.0005 -0.1224*** -0.4703*** -0.4855*** -0.1441*** -0.1643*** 
 (0.0208) (0.0237) (0.0416) (0.0428) (0.0100) (0.0105) 
       2008 0.1127*** -0.0180 -0.3675*** -0.3857*** -0.1323*** -0.1505*** 
 (0.0210) (0.0237) (0.0409) (0.0418) (0.0085) (0.0096) 
       2009 0.1520*** 0.0265 -0.3346*** -0.3500*** -0.1304*** -0.1513*** 
 (0.0203) (0.0235) (0.0405) (0.0415) (0.0082) (0.0094) 
       2010 0.2421*** 0.1142*** -0.2922*** -0.3282*** -0.1436*** -0.1647*** 
 (0.0212) (0.0239) (0.0400) (0.0409) (0.0088) (0.0098) 
       2011 0.2994*** 0.1698*** -0.2641*** -0.3137*** -0.1400*** -0.1580*** 
 (0.0220) (0.0249) (0.0433) (0.0442) (0.0095) (0.0103) 
       Constant 1.1297*** 1.4439*** 2.8727*** 2.9758*** 0.1890*** 0.2060*** 
 (0.0142) (0.0173) (0.0272) (0.0278) (0.0063) (0.0074) 
N 86,736 86,736 134,264 134,264 134,264 134,264 
R2 0.067 0.028 0.022 0.027 0.039 0.051 

Notes: Standard errors (in parentheses) are clustered at the farmer level. Model includes time fixed 
effects, CRD-specific time trends and individual fixed effects.  * p < 0.05, ** p < 0.01, *** p < 0.001 
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Table S3. Full Results Corresponding to Fig. 2 and Fig. 3 in the Main Text   
 
 Soybean Herbicides Maize Herbicides Maize Insecticides 
 a.i.   kg/ha EIQ  kg/ha a.i.   kg/ha EIQ  kg/ha a.i.   kg/ha EIQ  kg/ha 
Gi × 1998 0.1714*** -0.1487*** -0.5527*** -0.7993*** 0.0011 0.0059 
 (0.0201) (0.0247) (0.1121) (0.1143) (0.0079) (0.0099) 
       
Gi × 1999 0.2089*** -0.1067*** -0.3574*** -0.5778*** 0.0130* 0.0138* 
 (0.0196) (0.0245) (0.0636) (0.0670) (0.0063) (0.0067) 
       
Gi × 2000 0.2422*** -0.0472 -0.4363*** -0.6754*** -0.0022 -0.0033 
 (0.0196) (0.0253) (0.0639) (0.0664) (0.0073) (0.0074) 
       
Gi × 2001 0.3017*** 0.0112 -0.1933*** -0.3796*** -0.0011 -0.0030 
 (0.0215) (0.0271) (0.0507) (0.0523) (0.0072) (0.0070) 
       
Gi × 2002 0.3060*** 0.0094 -0.2228*** -0.4464*** -0.0169* -0.0195** 
 (0.0236) (0.0293) (0.0468) (0.0479) (0.0079) (0.0072) 
       
Gi × 2003 0.4444*** 0.1512*** -0.2060*** -0.4706*** -0.0067 -0.0072 
 (0.0293) (0.0356) (0.0441) (0.0453) (0.0065) (0.0068) 
       
Gi × 2004 0.4280*** 0.1139** -0.1027* -0.3618*** -0.0114 -0.0085 
 (0.0303) (0.0388) (0.0418) (0.0426) (0.0060) (0.0062) 
       
Gi × 2005 0.3977*** 0.1014* -0.1210** -0.3701*** -0.0082* -0.0101** 
 (0.0317) (0.0395) (0.0376) (0.0387) (0.0039) (0.0039) 
       
Gi × 2006 0.3936*** 0.1403** -0.0442 -0.2569*** -0.0081* -0.0062 
 (0.0381) (0.0474) (0.0347) (0.0359) (0.0039) (0.0036) 
       
Gi × 2007 0.4525*** 0.1768** 0.0190 -0.2131*** -0.0168** -0.0149** 
 (0.0512) (0.0642) (0.0385) (0.0404) (0.0063) (0.0053) 
       
Gi × 2008 0.5399*** 0.2915*** 0.2301*** 0.0247 -0.0337*** -0.0304*** 
 (0.0521) (0.0652) (0.0395) (0.0410) (0.0039) (0.0037) 
       
Gi × 2009 0.4917*** 0.2304*** 0.1438*** -0.0639 -0.0277*** -0.0248*** 
 (0.0442) (0.0545) (0.0406) (0.0423) (0.0034) (0.0033) 
       
Gi × 2010 0.6428*** 0.3760*** 0.2973*** 0.0894 -0.0207*** -0.0218*** 
 (0.0492) (0.0587) (0.0436) (0.0458) (0.0032) (0.0033) 
       
Gi × 2011 0.6604*** 0.4262*** 0.3639*** 0.1535** -0.0191*** -0.0182*** 
 (0.0552) (0.0638) (0.0567) (0.0590) (0.0038) (0.0040) 
       
1999 -0.1306*** -0.1548*** -0.2637*** -0.2684*** -0.0301*** -0.0398*** 
 (0.0217) (0.0278) (0.0303) (0.0315) (0.0063) (0.0074) 
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Table S3. continued 
       
2000 -0.1090*** -0.1439*** -0.3171*** -0.3307*** -0.0268*** -0.0408*** 
 (0.0232) (0.0300) (0.0330) (0.0338) (0.0078) (0.0087) 
       
2001 -0.1534*** -0.2067*** -0.3869*** -0.3914*** -0.0488*** -0.0642*** 
 (0.0255) (0.0324) (0.0330) (0.0341) (0.0072) (0.0084) 
       
2002 -0.1961*** -0.2856*** -0.4606*** -0.4707*** -0.0451*** -0.0625*** 
 (0.0279) (0.0353) (0.0348) (0.0358) (0.0102) (0.0103) 
       
2003 -0.2537*** -0.3635*** -0.4758*** -0.4870*** -0.0568*** -0.0714*** 
 (0.0327) (0.0402) (0.0364) (0.0376) (0.0088) (0.0098) 
       
2004 -0.2391*** -0.3423*** -0.5312*** -0.5289*** -0.0775*** -0.1004*** 
 (0.0336) (0.0433) (0.0374) (0.0387) (0.0082) (0.0093) 
       
2005 -0.2023*** -0.3221*** -0.5452*** -0.5354*** -0.0920*** -0.1133*** 
 (0.0349) (0.0439) (0.0407) (0.0417) (0.0084) (0.0092) 
       
2006 -0.2600*** -0.4231*** -0.5640*** -0.5803*** -0.1263*** -0.1475*** 
 (0.0409) (0.0513) (0.0420) (0.0435) (0.0086) (0.0094) 
       
2007 -0.1931*** -0.3444*** -0.5116*** -0.5236*** -0.1392*** -0.1595*** 
 (0.0533) (0.0674) (0.0473) (0.0493) (0.0117) (0.0115) 
       
2008 -0.1648** -0.3513*** -0.5801*** -0.6146*** -0.1168*** -0.1359*** 
 (0.0538) (0.0679) (0.0490) (0.0508) (0.0087) (0.0096) 
       
2009 -0.0771 -0.2454*** -0.4894*** -0.5200*** -0.1187*** -0.1404*** 
 (0.0472) (0.0588) (0.0495) (0.0513) (0.0083) (0.0094) 
       
2010 -0.1305* -0.2965*** -0.5914*** -0.6436*** -0.1362*** -0.1555*** 
 (0.0515) (0.0622) (0.0531) (0.0555) (0.0089) (0.0099) 
       
2011 -0.0902 -0.2886*** -0.6317*** -0.6957*** -0.1335*** -0.1510*** 
 (0.0569) (0.0667) (0.0638) (0.0661) (0.0095) (0.0103) 
       
Constant 1.1812*** 1.5043*** 2.8851*** 2.9887*** 0.1865*** 0.2028*** 
 (0.0164) (0.0205) (0.0273) (0.0279) (0.0063) (0.0072) 
N 86,736 86,736 134,264 134,264 134,264 134,264 
R2 0.071 0.032 0.026 0.031 0.040 0.051 

Notes: Standard errors (in parentheses) are clustered at the farmer level. Model includes time fixed 
effects, CRD-specific time trends and individual fixed effects.  * p < 0.05, ** p < 0.01, *** p < 0.001 
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Table S4. Random Effects replace Farmers Fixed Effects (compare to table S3) 
 Soybean Herbicides Maize Herbicides Maize Insecticides 
 a.i.   kg/ha EIQ  kg/ha a.i.   kg/ha EIQ  kg/ha a.i.   kg/ha EIQ  kg/ha 
Gi × 1998 0.1605*** -0.1726*** -0.6704*** -0.9345*** -0.0050 -0.0028 
 (0.0174) (0.0212) (0.0988) (0.1002) (0.0078) (0.0099) 
       
Gi × 1999 0.1987*** -0.1288*** -0.4138*** -0.6418*** 0.0120 0.0124 
 (0.0174) (0.0218) (0.0599) (0.0634) (0.0063) (0.0068) 
       
Gi × 2000 0.2313*** -0.0804*** -0.5255*** -0.7775*** -0.0042 -0.0055 
 (0.0176) (0.0228) (0.0571) (0.0594) (0.0073) (0.0074) 
       
Gi × 2001 0.2918*** -0.0152 -0.2572*** -0.4587*** -0.0066 -0.0090 
 (0.0195) (0.0248) (0.0472) (0.0489) (0.0072) (0.0070) 
       
Gi × 2002 0.3100*** -0.0016 -0.3153*** -0.5534*** -0.0220** -0.0228** 
 (0.0217) (0.0271) (0.0428) (0.0440) (0.0085) (0.0077) 
       
Gi × 2003 0.4439*** 0.1348*** -0.2640*** -0.5426*** -0.0100 -0.0114 
 (0.0267) (0.0334) (0.0409) (0.0421) (0.0059) (0.0065) 
       
Gi × 2004 0.4122*** 0.0868* -0.1892*** -0.4618*** -0.0114 -0.0087 
 (0.0276) (0.0357) (0.0383) (0.0393) (0.0059) (0.0061) 
       
Gi × 2005 0.3837*** 0.0659 -0.1734*** -0.4345*** -0.0086* -0.0107** 
 (0.0295) (0.0377) (0.0346) (0.0356) (0.0040) (0.0039) 
       
Gi × 2006 0.4106*** 0.1454*** -0.0765* -0.3003*** -0.0078* -0.0057 
 (0.0338) (0.0431) (0.0324) (0.0337) (0.0034) (0.0032) 
       
Gi × 2007 0.5277*** 0.2459*** 0.0294 -0.2124*** -0.0166*** -0.0143** 
 (0.0460) (0.0579) (0.0360) (0.0379) (0.0047) (0.0045) 
       
Gi × 2008 0.6226*** 0.3620*** 0.2556*** 0.0437 -0.0299*** -0.0277*** 
 (0.0486) (0.0613) (0.0372) (0.0387) (0.0037) (0.0035) 
       
Gi × 2009 0.5368*** 0.2529*** 0.1929*** -0.0210 -0.0250*** -0.0229*** 
 (0.0420) (0.0526) (0.0388) (0.0405) (0.0032) (0.0032) 
       
Gi × 2010 0.6821*** 0.3950*** 0.3742*** 0.1615*** -0.0194*** -0.0211*** 
 (0.0458) (0.0557) (0.0415) (0.0436) (0.0030) (0.0033) 
       
Gi × 2011 0.6875*** 0.4305*** 0.4794*** 0.2663*** -0.0175*** -0.0169*** 
 (0.0498) (0.0581) (0.0528) (0.0550) (0.0035) (0.0038) 
N 86736 86736 134264 134264 134264 134264 
R2 0.065 0.025 0.012 0.016 0.019 0.024 
Hausman test 607.4*** 641.2*** 2,615 *** 3,004*** 3,164*** 4,335*** 

Notes: Standard errors (in parentheses) are clustered at the farmer level. Model includes time 
fixed effects and CRD-specific time trends. * p < 0.05, ** p < 0.01, *** p < 0.001 
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Table S5. Model Estimates with the No-Till Binary Variable Included 

 Soybean Herbicides Maize Herbicides 
 a.i.   kg/ha EIQ  kg/ha a.i.   kg/ha EIQ  kg/ha 
No Till 0.1600*** 0.1408*** 0.1531*** 0.1240*** 
 (0.0081) (0.0090) (0.0162) (0.0168) 
     Gi × 1998 0.1609*** -0.1580*** -0.5588*** -0.8043*** 
 (0.0201) (0.0247) (0.1117) (0.1140) 
     Gi × 1999 0.1986*** -0.1158*** -0.3606*** -0.5804*** 
 (0.0195) (0.0245) (0.0635) (0.0670) 
     Gi × 2000 0.2334*** -0.0549* -0.4394*** -0.6779*** 
 (0.0196) (0.0254) (0.0639) (0.0664) 
     Gi × 2001 0.2906*** 0.0014 -0.1989*** -0.3841*** 
 (0.0215) (0.0271) (0.0506) (0.0523) 
     Gi × 2002 0.2956*** 0.0003 -0.2238*** -0.4472*** 
 (0.0236) (0.0293) (0.0468) (0.0479) 
     Gi × 2003 0.4346*** 0.1426*** -0.2095*** -0.4734*** 
 (0.0292) (0.0356) (0.0440) (0.0452) 
     Gi × 2004 0.4197*** 0.1066** -0.1102** -0.3678*** 
 (0.0302) (0.0387) (0.0417) (0.0425) 
     Gi × 2005 0.3862*** 0.0913* -0.1244*** -0.3728*** 
 (0.0317) (0.0395) (0.0376) (0.0387) 
     Gi × 2006 0.3803*** 0.1286** -0.0458 -0.2583*** 
 (0.0382) (0.0475) (0.0347) (0.0359) 
     Gi × 2007 0.4488*** 0.1736** 0.0172 -0.2146*** 
 (0.0511) (0.0641) (0.0385) (0.0405) 
     Gi × 2008 0.5298*** 0.2826*** 0.2272*** 0.0223 
 (0.0522) (0.0653) (0.0395) (0.0410) 
     Gi × 2009 0.4801*** 0.2201*** 0.1404*** -0.0666 
 (0.0443) (0.0547) (0.0406) (0.0423) 
     Gi × 2010 0.6341*** 0.3683*** 0.2922*** 0.0853 
 (0.0491) (0.0588) (0.0435) (0.0458) 
     Gi × 2011 0.6420*** 0.4100*** 0.3578*** 0.1486* 
 (0.0548) (0.0634) (0.0568) (0.0591) 
N 86,736 86,736 134,264 134,264 
R2 0.079 0.037 0.028 0.032 

Notes: Standard errors (in parentheses) are clustered at the farmer level. Model includes time 
fixed effects, CRD-specific time trends and individual fixed effects. * p < 0.05, ** p < 0.01, *** p < 
0.001 
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Table S6.  Impact of GE variety adoption on herbicide use (kg/ha of a.i.)  
                   Results including indicator variables for major targeted weeds 
 
 Soybean Herbicides Maize Herbicides 
 a.i. kg/ha a.i. kg/ha a.i. kg/ha a.i. kg/ha 
Gi 0.3176***  -0.0245  

(0.0096)  (0.0147)  
     
Gi × 1998  0.1976***  -0.4943*** 
  (0.0199)  (0.1097) 
     
Gi × 1999  0.2275***  -0.2978*** 
  (0.0194)  (0.0618) 
     
Gi × 2000  0.2571***  -0.3906*** 
  (0.0195)  (0.0624) 
     
Gi × 2001  0.3192***  -0.1674*** 
  (0.0213)  (0.0497) 
     
Gi × 2002  0.3146***  -0.1845*** 
  (0.0233)  (0.0461) 
     
Gi × 2003  0.4562***  -0.1727*** 
  (0.0289)  (0.0430) 
     
Gi × 2004  0.4366***  -0.0790 
  (0.0299)  (0.0414) 
     
Gi × 2005  0.4097***  -0.1075** 
  (0.0313)  (0.0370) 
     
Gi × 2006  0.3999***  -0.0455 
  (0.0379)  (0.0342) 
     
Gi × 2007  0.4483***  0.0160 
  (0.0491)  (0.0378) 
     
Gi × 2008  0.5417***  0.2177*** 
  (0.0508)  (0.0394) 
     
Gi × 2009  0.5019***  0.1317** 
  (0.0430)  (0.0405) 
     
Gi × 2010  0.6548***  0.2733*** 
  (0.0475)  (0.0426) 
     
Gi × 2011  0.6530***  0.3260*** 
  (0.0544)  (0.0564) 
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Table S6. continued 
     
Cocklebur 0.0672*** 0.0654*** 0.1168*** 0.1149*** 
 (0.0086) (0.0086) (0.0188) (0.0188) 
     
Foxtail 0.1005*** 0.0990*** 0.2935*** 0.2888*** 
 (0.0079) (0.0079) (0.0157) (0.0157) 
     
Lambsquarters 0.0617*** 0.0599*** 0.1070*** 0.1030*** 
 (0.0091) (0.0091) (0.0169) (0.0169) 
     
Pigweed 0.0728*** 0.0718*** 0.1876*** 0.1848*** 
 (0.0090) (0.0090) (0.0163) (0.0163) 
     
Ragweed 0.0517*** 0.0514*** 0.1334*** 0.1302*** 
 (0.0094) (0.0093) (0.0183) (0.0183) 
     
Velvetleaf 0.0306*** 0.0290** 0.1573*** 0.1549*** 
 (0.0089) (0.0088) (0.0168) (0.0168) 
     
Waterhemp 0.0831*** 0.0839*** 0.0767*** 0.0752** 
 (0.0107) (0.0107) (0.0233) (0.0233) 
     
Morningglory 0.0797*** 0.0775*** 0.2045*** 0.2028*** 
 (0.0144) (0.0144) (0.0313) (0.0313) 
     
Johnson grass 0.0857*** 0.0871*** 0.0641* 0.0687* 
 (0.0152) (0.0152) (0.0294) (0.0294) 
     
N 86,736 86,736 134,264 134,264 
R2 0.080 0.083 0.043 0.046 

Notes: Standard errors (in parentheses) are clustered at the farmer level. Model includes time 
fixed effects, CRD-specific time trends and individual fixed effects. * p < 0.05, ** p < 0.01, *** p < 0.001 

 

Table S7.  Model excludes growers that plant both GE and non-GE varieties within a given year  
                   (compare with Table 1 in the main text) 
 
 Soybean Herbicides Corn Herbicides Corn Insecticides 
 a.i. kg/ha EIQ kg/ha a.i. kg/ha EIQ kg/ha a.i. kg/ha EIQ kg/ha 
Gi 0.2559*** -0.0515* -0.0956** -0.3480*** -0.0106 -0.0101 
 (0.0189) (0.0226) (0.0295) (0.0308) (0.0070) (0.0069) 
N 71,239 71,239 108,327 108,327 62,265 62,265 
R2 0.060 0.037 0.027 0.032 0.030 0.042 

Notes: Standard errors (in parentheses) are clustered at the farmer level. Model includes time fixed 
effects, CRD-specific time trends and individual fixed effects. * p < 0.05, ** p < 0.01, *** p < 0.001 
  



www.manaraa.com

92 

 

 

Table S8. Model excludes growers that plant both GE and non-GE varieties within a given year  
      (compare with Table S3) 
 Soybean Herbicides Corn Herbicides Corn Insecticides 
 a.i. kg/ha EIQ kg/ha a.i. kg/ha EIQ kg/ha a.i. kg/ha EIQ kg/ha 
Gi × 1998 0.0602 -0.2774*** -0.9996*** -1.2646*** 0.0011 0.0036 
 (0.0364) (0.0422) (0.2887) (0.2933) (0.0351) (0.0468) 
       
Gi × 1999 0.1358*** -0.1985*** -0.8637*** -1.1141*** -0.0180 -0.0322 
 (0.0340) (0.0412) (0.1609) (0.1738) (0.0292) (0.0327) 
       
Gi × 2000 0.1690*** -0.1425*** -0.5778*** -0.8486*** 0.0099 0.0272 
 (0.0319) (0.0389) (0.1182) (0.1211) (0.0231) (0.0271) 
       
Gi × 2001 0.2276*** -0.0860 -0.4668*** -0.6952*** 0.0704 0.0540 
 (0.0365) (0.0455) (0.0921) (0.0948) (0.0679) (0.0576) 
       
Gi × 2002 0.2509*** -0.0591 -0.3760*** -0.6292*** 0.0010 -0.0110 
 (0.0379) (0.0475) (0.0774) (0.0784) (0.0245) (0.0218) 
       
Gi × 2003 0.4036*** 0.1162* -0.2470*** -0.5122*** -0.0129 -0.0054 
 (0.0459) (0.0558) (0.0661) (0.0670) (0.0225) (0.0229) 
       
Gi × 2004 0.3770*** 0.0740 -0.1321* -0.3954*** 0.0157 0.0217 
 (0.0452) (0.0580) (0.0605) (0.0619) (0.0382) (0.0407) 
       
Gi × 2005 0.4047*** 0.1211* -0.1272* -0.3910*** -0.0052 -0.0099 
 (0.0456) (0.0554) (0.0596) (0.0608) (0.0155) (0.0178) 
       
Gi × 2006 0.3448*** 0.0967 -0.1408* -0.3775*** -0.0082 -0.0060 
 (0.0578) (0.0715) (0.0567) (0.0586) (0.0129) (0.0120) 
       
Gi × 2007 0.4456*** 0.1756* -0.1416* -0.4053*** -0.0198 -0.0215 
 (0.0666) (0.0809) (0.0644) (0.0679) (0.0226) (0.0190) 
       
Gi × 2008 0.5352*** 0.2680** 0.1822** -0.0579 -0.0336*** -0.0244* 
 (0.0656) (0.0827) (0.0645) (0.0669) (0.0101) (0.0095) 
       
Gi × 2009 0.5135*** 0.2473** 0.0409 -0.1995** -0.0255* -0.0211 
 (0.0638) (0.0789) (0.0671) (0.0702) (0.0113) (0.0119) 
       
Gi × 2010 0.6811*** 0.3947*** 0.2575*** 0.0086 -0.0201 -0.0251* 
 (0.0662) (0.0799) (0.0721) (0.0748) (0.0117) (0.0126) 
       
Gi × 2011 0.6311*** 0.3868*** 0.2363** -0.0250 -0.0196 -0.0199 
 (0.0762) (0.0840) (0.0894) (0.0930) (0.0124) (0.0122) 
N 71,239 71,239 108,327 108,327 62,265 62,265 
R2 0.064 0.042 0.030 0.034 0.030 0.043 

Notes: Standard errors (in parentheses) are clustered at the farmer level. Model includes time fixed 
effects, CRD-specific time trends and individual fixed effects. * p < 0.05, ** p < 0.01, *** p < 0.001 
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Table S9. Model excludes farmers that never used pesticides (on any of their plots) 

         (compare with Table 1 in the main text) 

 Soybean Herbicides Corn Herbicides Corn Insecticides 

 a.i. kg/ha EIQ kg/ha a.i. kg/ha EIQ kg/ha a.i. kg/ha EIQ kg/ha 

Gi 0.3023*** 0.0045 -0.0331* -0.2594*** -0.0140*** -0.0131*** 

 (0.0097) (0.0122) (0.0150) (0.0157) (0.0015) (0.0016) 

N 85,932 85,932 132,824 132,824 106,256 106,256 

R2 0.067 0.028 0.022 0.028 0.042 0.055 

Notes: Standard errors (in parentheses) are clustered at the farmer level. Model includes time fixed 
effects, CRD-specific time trends and individual fixed effects. * p < 0.05, ** p < 0.01, *** p < 0.001 
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Table S10. Model excludes farmers that never used pesticides (on any of their plots) 

       (compare with Table S3) 
 

 Soybean Herbicides Corn Herbicides Corn Insecticides 
 a.i. kg/ha EIQ kg/ha a.i. kg/ha EIQ kg/ha a.i. kg/ha EIQ kg/ha 
Gi × 1998 0.1709*** -0.1499*** -0.5537*** -0.8029*** -0.0037 0.0015 
 (0.0202) (0.0247) (0.1132) (0.1154) (0.0116) (0.0145) 
       
Gi × 1999 0.2093*** -0.1071*** -0.3598*** -0.5817*** 0.0179* 0.0191* 
 (0.0197) (0.0247) (0.0640) (0.0674) (0.0089) (0.0096) 
       
Gi × 2000 0.2422*** -0.0477 -0.4366*** -0.6761*** -0.0049 -0.0064 
 (0.0197) (0.0255) (0.0640) (0.0664) (0.0103) (0.0105) 
       
Gi × 2001 0.3021*** 0.0109 -0.1931*** -0.3796*** -0.0008 -0.0032 
 (0.0217) (0.0274) (0.0507) (0.0524) (0.0098) (0.0095) 
       
Gi × 2002 0.3071*** 0.0101 -0.2228*** -0.4468*** -0.0224* -0.0254* 
 (0.0239) (0.0297) (0.0469) (0.0480) (0.0110) (0.0100) 
       
Gi × 2003 0.4472*** 0.1539*** -0.2061*** -0.4709*** -0.0078 -0.0084 
 (0.0298) (0.0363) (0.0441) (0.0453) (0.0085) (0.0088) 
       
Gi × 2004 0.4301*** 0.1159** -0.1027* -0.3623*** -0.0126 -0.0090 
 (0.0309) (0.0396) (0.0419) (0.0427) (0.0071) (0.0073) 
       
Gi × 2005 0.3982*** 0.1021* -0.1210** -0.3703*** -0.0079 -0.0097* 
 (0.0323) (0.0402) (0.0377) (0.0387) (0.0043) (0.0043) 
       
Gi × 2006 0.3981*** 0.1458** -0.0440 -0.2571*** -0.0067 -0.0044 
 (0.0392) (0.0488) (0.0348) (0.0360) (0.0042) (0.0039) 
       
Gi × 2007 0.4569*** 0.1827** 0.0189 -0.2137*** -0.0145* -0.0124* 
 (0.0541) (0.0678) (0.0387) (0.0406) (0.0067) (0.0056) 
       
Gi × 2008 0.5433*** 0.2981*** 0.2311*** 0.0258 -0.0337*** -0.0303*** 
 (0.0557) (0.0697) (0.0400) (0.0415) (0.0041) (0.0038) 
       
Gi × 2009 0.4907*** 0.2305*** 0.1439*** -0.0638 -0.0273*** -0.0242*** 
 (0.0465) (0.0573) (0.0412) (0.0430) (0.0035) (0.0034) 
       
Gi × 2010 0.6425*** 0.3776*** 0.3024*** 0.0952* -0.0195*** -0.0206*** 
 (0.0529) (0.0632) (0.0447) (0.0470) (0.0033) (0.0034) 
       
Gi × 2011 0.6602*** 0.4295*** 0.3697*** 0.1599** -0.0185*** -0.0176*** 
 (0.0579) (0.0669) (0.0588) (0.0611) (0.0039) (0.0041) 
N 85,932 85,932 132,824 132,824 106,256 106,256 
R2 0.072 0.032 0.026 0.031 0.043 0.055 

Notes: Standard errors (in parentheses) are clustered at the farmer level. Model includes time 
fixed effects, CRD-specific time trends and individual fixed effects. * p < 0.05, ** p < 0.01, *** p < 0.001 
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Table S11. Full Set of Results Corresponding to Fig. 4 in the Main Text 

 

 Soybeans Maize 
 Glyphosate 

(kg/ha) 
Non-Glyphosate  

(kg/ha) 
Glyphosate 

(kg/ha) 
Non-Glyphosate  

(kg/ha) 
Gi × 1998 0.8772*** -0.7057*** 0.7651*** -1.3178*** 
 (0.0117) (0.0176) (0.0263) (0.1114) 
     
Gi × 1999 0.8686*** -0.6596*** 0.6808*** -1.0382*** 
 (0.0111) (0.0175) (0.0240) (0.0659) 
     
Gi × 2000 0.8481*** -0.6059*** 0.7547*** -1.1910*** 
 (0.0115) (0.0183) (0.0261) (0.0644) 
     
Gi × 2001 0.8908*** -0.5891*** 0.6197*** -0.8130*** 
 (0.0131) (0.0192) (0.0206) (0.0512) 
     
Gi × 2002 0.8831*** -0.5771*** 0.7607*** -0.9835*** 
 (0.0151) (0.0200) (0.0195) (0.0461) 
     
Gi × 2003 0.9882*** -0.5438*** 0.8892*** -1.0952*** 
 (0.0185) (0.0241) (0.0179) (0.0427) 
     
Gi × 2004 1.0075*** -0.5795*** 0.8695*** -0.9722*** 
 (0.0188) (0.0251) (0.0172) (0.0395) 
     
Gi × 2005 0.9548*** -0.5572*** 0.8060*** -0.9270*** 
 (0.0188) (0.0266) (0.0153) (0.0361) 
     
Gi × 2006 0.8344*** -0.4408*** 0.6953*** -0.7394*** 
 (0.0223) (0.0333) (0.0142) (0.0333) 
     
Gi × 2007 0.8794*** -0.4268*** 0.7490*** -0.7300*** 
 (0.0351) (0.0408) (0.0134) (0.0375) 
     
Gi × 2008 0.9715*** -0.4316*** 0.7085*** -0.4784*** 
 (0.0338) (0.0438) (0.0148) (0.0385) 
     
Gi × 2009 0.9671*** -0.4754*** 0.7104*** -0.5666*** 
 (0.0283) (0.0370) (0.0147) (0.0389) 
     
Gi × 2010 1.1295*** -0.4868*** 0.6920*** -0.3947*** 
 (0.0321) (0.0380) (0.0173) (0.0431) 
     
Gi × 2011 1.1278*** -0.4674*** 0.6898*** -0.3260*** 
 (0.0370) (0.0434) (0.0222) (0.0547) 
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Table S11. continued 
     
1999 -0.0229* -0.1077*** 0.0008 -0.2645*** 
 (0.0091) (0.0200) (0.0054) (0.0300) 
     
2000 0.0249* -0.1339*** 0.0175** -0.3347*** 
 (0.0104) (0.0217) (0.0067) (0.0326) 
     
2001 0.0484*** -0.2018*** 0.0267*** -0.4136*** 
 (0.0121) (0.0234) (0.0067) (0.0326) 
     
2002 0.0876*** -0.2837*** 0.0381*** -0.4988*** 
 (0.0148) (0.0249) (0.0071) (0.0344) 
     
2003 0.0787*** -0.3324*** 0.0534*** -0.5292*** 
 (0.0179) (0.0282) (0.0076) (0.0359) 
     
2004 0.0781*** -0.3173*** 0.0523*** -0.5835*** 
 (0.0182) (0.0292) (0.0079) (0.0369) 
     
2005 0.1427*** -0.3450*** 0.0743*** -0.6194*** 
 (0.0185) (0.0306) (0.0098) (0.0392) 
     
2006 0.2103*** -0.4702*** 0.1221*** -0.6861*** 
 (0.0224) (0.0367) (0.0100) (0.0413) 
     
2007 0.2855*** -0.4785*** 0.1576*** -0.6692*** 
 (0.0349) (0.0438) (0.0109) (0.0465) 
     
2008 0.2996*** -0.4644*** 0.2279*** -0.8080*** 
 (0.0334) (0.0465) (0.0135) (0.0485) 
     
2009 0.3118*** -0.3889*** 0.2174*** -0.7068*** 
 (0.0285) (0.0405) (0.0137) (0.0481) 
     
2010 0.2371*** -0.3676*** 0.2891*** -0.8805*** 
 (0.0323) (0.0408) (0.0166) (0.0526) 
     
2011 0.2493*** -0.3395*** 0.3312*** -0.9628*** 
 (0.0370) (0.0457) (0.0210) (0.0620) 
     
Constant 0.1476*** 1.0336*** 0.0625*** 2.8226*** 
 (0.0079) (0.0150) (0.0061) (0.0270) 
N 86,736 86,736 134,264 134,264 
R2 0.357 0.238 0.440 0.108 

Notes: Standard errors (in parentheses) are clustered at the farmer level. Model includes time fixed 
effects, CRD-specific time trends and individual fixed effects. * p < 0.05, ** p < 0.01, *** p < 0.001 
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Table S12. US GE Adoption Rates (% of planted hectares), 1998-2011 

Year Bt Maize 
HT 

Maize HT Soy 
1998 11% 3% 37% 
1999 19% 6% 57% 
2000 18% 8% 63% 
2001 19% 13% 74% 
2002 23% 15% 83% 
2003 26% 19% 88% 
2004 30% 28% 90% 
2005 40% 40% 91% 
2006 46% 51% 94% 
2007 59% 71% 96% 
2008 66% 84% 96% 
2009 69% 88% 95% 
2010 69% 90% 95% 
2011 71% 91% 97% 

 

 

Table S13. US Pesticide Rates (kg/ha), 1998-2011 

Year 
Maize 

Insecticides 
Maize 

Herbicides 
Soybean 

Herbicides 
1998 0.203 2.848 1.248 
1999 0.172 2.514 1.197 
2000 0.174 2.532 1.228 
2001 0.139 2.498 1.279 
2002 0.146 2.372 1.250 
2003 0.133 2.392 1.339 
2004 0.119 2.310 1.356 
2005 0.081 2.344 1.367 
2006 0.056 2.285 1.292 
2007 0.055 2.464 1.441 
2008 0.052 2.560 1.600 
2009 0.051 2.525 1.609 
2010 0.039 2.624 1.726 
2011 0.053 2.652 1.862 

Notes: these rates are calculated by adding up the total amount of active ingredients used in 
each year and dividing by the total number of hectares planted to the corresponding crop. 
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Table S14. Correlation Between State-Level GE Adoption Rates from USDA and GfK Data 

 Maize Soybeans 

All GE Varieties 0.987 0.901 

GT Only Varieties 0.956 0.901 

 

  

 

Table S15.  Summary Statistics by Adoption Choice  

 

  Soybeans   Maize 

Variable non-GT GT  non-GT GT 

      

Weed Targeted      

Cocklebur 37.7% 28.2%  30.2% 24.7% 

Foxtail 57.0% 48.3%  60.5% 57.3% 

Lamb's Quarters 26.3% 23.1%  29.1% 32.0% 

Pigweed 27.8% 23.0%  27.3% 26.6% 

Ragweed 28.3% 24.2%  25.6% 24.1% 

Velvet Leaf 26.0% 25.8%  34.0% 34.6% 

Water Hemp 16.9% 19.6%  17.0% 21.4% 

Morning Glory 14.6% 10.7%  7.5% 6.5% 

Johnson Grass 11.2% 11.0%  7.5% 7.8% 

      

Hectares Grown 198.5 204.6  175.9 217.9 
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CHAPTER 4 

A DISCRETE CHOICE MODEL OF SEED DEMAND: GENETICALLY ENGINEERED 

VARIETIES IN U.S. CORN AND SOYBEANS 

 

Federico Ciliberto, GianCarlo Moschini, and Edward D. Perry* 

 

Abstract 

 

 In the two decades since they were commercially released in the United States, 

genetically engineered (GE) corn and soybean varieties have become a staple of U.S. farming, 

exceeding 90% of planted land since 2011. However, consolidation and rising seed prices in the 

agrochemical and seed industries, particularly since 2007, have increasingly generated concern 

about the benefits for the farmers that now almost universally rely on GE varieties. In this 

paper, we develop a discrete choice model of corn and soybean seed varieties and use it to 

estimate U.S. farmers’ willingness-to-pay for GE traits over the period 1996-2011. Importantly, 

we allow the returns to GE traits to structurally vary over the three sub-periods that correspond 

to the expiration of Monsanto’s glyphosate patent in 2000 and the sharp increase in commodity 

prices that began in 2007.  We find that the marginal benefits to GE varieties were small early on 

and large in the final sub-period. A comparison of these benefits to the average premiums 

charged by seed firms suggests that the gains from GE varieties to farmers were in fact the 

greatest during the sub-period in which seed prices rose the most.  

 

*Senior authorship not assigned. 
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Introduction 

 

 The systematic application of modern biotechnology techniques to crop improvement 

has been one of the most salient developments affecting global agriculture in the last 20 years. 

The most impactful creation to emerge from these efforts are genetically engineered (GE) crop 

varieties, first introduced commercially in 1996. Despite being limited to four main crops 

(maize, soybean, cotton, and canola) and extensively grown in only a handful of countries 

(United States, Brazil, Argentina, India, and Canada accounted for more than 90% of GE crop 

planting in 2015), as of 2015, GE varieties were grown on more than 444 million acres 

worldwide (James, 2015). The United States has been at the forefront of these developments. 

U.S. seed companies have been leading innovators, and U.S. farmers have been ready and loyal 

adopters. In 2015, GE varieties were planted on more than 175 million acres of U.S. farmland 

(James, 2015), nearly 95% of which was maize and soybeans, and for all years since 2007, GE 

adoption rates for corn and soybeans have exceeded 75% and 90%, respectively (Fernandez-

Cornejo et al., 2014).   

 The development and diffusion of GE varieties have given rise to a number of economic 

issues that have been addressed by a considerable body of research (Shoemaker et al., 2001; 

Moschini, 2008; Barrows, Sexton, and Zilberman 2014). Despite the productivity enhancing 

potential of GE crops, the use of GE technology in agriculture has been marred by controversy 

(Carter, Moschini, and Sheldon, 2011). Concerns raised include the fear that GE products are 

harmful to human health and/or the environment, ethical objections related to human 

intervention in the DNA of living plants and animals, and mistrust of the ownership interests of 

multinational corporations that commercialize GE products.  

 Many of these concerns have been allayed. In fact, the environmental impacts of GE 

varieties appear to be generally positive. The National Research Council study (NRC, 2010) 

concluded that GE varieties result in reduced pesticide use and the use of lower toxicity 

products. These conclusions were largely confirmed in Bennett et al. (2013), although it is 

important to recognize that the effects of GE variety adoption on pesticide use have changed 
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over time (Perry, Ciliberto, Hennessy, and Moschini 2016). Other research has demonstrated a 

range of positive spill-over effects, including the area-wide suppression of crop-destroying 

pests by insect resistant corn (Hutchison et al. 2010) and the increased adoption of no-tillage 

systems by herbicide resistant soybean adopters (Perry, Moschini, and Hennessy 2016). Positive 

human health impacts have also been documented: for example, insect resistant varieties 

improve farm workers’ health by reducing exposure to insecticides (Huang et al., 2005). 

 Despite much work, there is less conclusive evidence on the monetary benefits 

associated with the main economic parties involved in GE crops (firms, farmers, and 

consumers). This is particularly important given that many view GE varieties negatively 

because of the belief that they mostly benefit the large firms that have developed and marketed 

them, but not the end users (farmers and, indirectly, consumers). The rapid adoption of GE 

crops is prima facie evidence of producer profitability. However, in recent years the culmination 

of high output prices and increasing market concentration have occurred alongside sharply 

increasing seed prices, prompting increased discussion about the role of market power in the 

seed industry (Moschini, 2010; Moss, 2010). The extent to which farmers have continued to 

benefit from GE varieties thus depends on how their marginal benefits have evolved relative to 

increasing costs. The answer is not clear. Farmers also benefit from rising output prices and the 

expiration of Monsanto’s patent on the herbicide glyphosate in 2000 has led to significantly 

lower herbicide costs for glyphosate tolerant seed adopters.  

 Ultimately, an economic assessment of the net economic value of such efficiency-

enhancing innovations requires both an explicit structural model and detailed data. In this 

paper we adapt the theory of discrete choice in a differentiated product setting (Anderson, De 

Palma and Thisse 1992) to farmers’ choice of seed varieties. The model is estimated by using a 

large farm-level dataset of seed choices by U.S. corn and soybean farmers over the 1996-2011 

period. The econometric estimates that we obtain are used to estimate the dynamic marginal 

benefit of GE variety adoption accruing to farmers. Among other things, these estimates can be 

compared with the average premiums charged by seed firms, which provides an initial 
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assessment of how the ex post returns of GE innovation are allocated between seed companies 

and farmers.  

In developing and estimating our model we contribute to the extant literature in several 

ways.  First, we draw on large and detailed dataset of plot-level choices of corn and soybean 

growers over the 1996-2011 period. In the past, the availability of detailed data on GE seed 

varieties has been a serious impediment to the kinds of analyses that could be conducted on 

these issues. Earlier studies that considered the welfare effects of GE varieties avoided this 

limitation by developing computable partial equilibrium frameworks. They found sizeable 

increases in welfare due to GE crop adoption, with the benefits shared by farmers, consumers 

and the sellers of improved crop varieties (Falck-Zepeda, Traxler, and Nelson, 2000; Moschini, 

Lapan, and Sobolevsky, 2000), a result requiring some qualifications when allowance is made 

for the induced product differentiation and costly segregation and identity preservation 

activities (Bullock and Desquilbet, 2002; Sobolevsky, Moschini, and Lapan, 2005). But, by 

design, these studies could not speak to individual level estimates of the benefits associated 

with GE crops, nor on what the more recent developments in the seed markets imply for 

growers.  

 The most recent direct econometric evidence has been provided by a series of papers 

that use a subset of the proprietary data used in this paper. The basic framework of these 

studies is presented in Shi, Chavas, and Stiegert (2010), with extensions in Shi, Stiegert, and 

Chavas (2011) and Shi et al. (2012). In general, they estimate hedonic regressions with seed 

prices as the dependent variable and the various GE traits (and their combinations) as the 

independent variables (they also include various other controls). For the period 2000-2007, they 

report positive premiums for most traits in both corn and soybeans, and they also find strong 

evidence of sub-additive pricing (i.e., the premium charged for a typical seed with two GE traits 

is less than the sum of the premiums charged for the respective single GE trait seeds). 

 Our work differs from these studies in that our econometric framework incorporates 

many of the recent advances made in the empirical IO literature over the past two decades 
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(Berry 1994; Berry et al. 1995; Nevo 2001). Our demand model is built from individual discrete 

choices on the basis of profit maximization, and we appropriately account the for presence of 

imperfect competition by including instrumental variables for seed prices. There is thus no 

ambiguity about the meaning of our estimates. This is in contrast to Shi et al (2010) and Shi et al. 

(2012) where it is to some degree unclear as to whether their estimates are capturing marginal 

benefits or marginal costs.  

 In addition, we specify and estimate a unified framework of corn and soybean seed 

demand; that is, within our framework farmers are modeled as choosing between all corn and 

soybean varieties at the same time. This is important for at least two reasons. First, estimating 

the demand for each crop in isolation, as done by all previous studies, implicitly assumes that 

there is no significant short-run substitution between crops. Recent work by Hendricks, Smith, 

and Sumner (2014) clearly demonstrates that there can be significant short-run substitution 

between corn and soybeans. This was particularly evident in 2007, when a sharp increase in the 

corn futures price led to significant substitution of corn for soybeans. The practical problem 

associated with modeling demand for each crop in isolation is that the estimated elasticities will 

be biased towards zero. This assumption also precludes the analysis of the setting where seed 

firms jointly choose corn and soybean prices. Indeed, large firms such as Monsanto and Dupont 

may enjoy an additional markup by virtue of the fact that they have strong positions in both the 

corn and soybean seed markets.  

 Lastly, we permit our estimates for the marginal benefits associated with GE traits to 

differ over three important sub-periods: (i) 1996-2000, (ii) 2001-2006, and (iii) 2007-2011. By 

doing so, we allow the estimates to reflect certain important institutional characteristics, as well 

as two major events. As with any new innovation, there is a learning period, and in the case of 

corn and soybean seed varieties, the incorporation of new GE traits does not occur 

instantaneously. Over time, a wider array and better yielding set of varieties receive the 

technology. The presence of these factors are in part what produces the classic adoption 

patterns discussed by Griliches in his paper on corn hybrids (Griliches 1957). What these factors 

also imply is that the benefits associated with GE varieties change over time.  
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 As noted, there were also two important events during the period we study. The first 

was the expiration of Monsanto’s glyphosate patent in 2000. This subsequently led to a fall in 

glyphosate prices of more than 70% over the next ten years. Because glyphosate is so closely 

tied to GE glyphosate tolerant soybeans, their marginal benefits will have certainly reflected 

this. The second major event was the sharp increase in corn and soybean output prices that 

began in 2007. Because an increase in output prices raises the relative value of higher yielding 

inputs, GE varieties, whose yield has been shown to be superior, particularly for insect resistant 

varieties (Xu et al. 2013), will become more valuable relative to non-GE varieties. This is in turn 

will be reflected in their estimated marginal benefits.      

  Our results generally confirm these facts. We find that farmers’ willingness to pay for 

GE traits tended to be small early on and high in the final sub-period. In general, there were 

significant differences across time, with all values increasing by at least 100%. For example, for 

corn varieties resistant to the European Corn Borer, we estimate that farmers were willing to 

pay just $2.15 per acre in the first sub-period and $14.22 per acre in the final sub-period. In 

addition, we also find that the benefits for multiple GE traits (in a single seed) were larger 

compared to single-trait seeds but sub-additive, a finding consistent with the work of Shi et al. 

(2012). Perhaps most interestingly, a comparison of the WTP estimates to the actual average 

premiums charged by seed firms shows that the difference was largest in the final sub-period. 

For example, soybean farmers were willing to pay $19.34 for glyphosate tolerance in final sub-

period, whereas seed firms charged an average of just $6.98 for it, a difference of $11.36. By 

contrast, the difference was just $.59 in the first sub-period. We interpret this as suggesting that, 

counterintuitively, the gains for GE varieties were in fact greatest during the period in which 

seed prices rose the most. The caveat to this interpretation is that it hinges on the assumption 

that non-GE prices would not have been significantly different in the counterfactual without GE 

varieties. This provides an avenue for future work in which the prices of non-GE varieties are 

simulated. 

 The rest of this paper proceeds as follows. We first motivate the problem at hand with a 

discussion of the data, as well some important details and trends for the corn and soybean 
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industries. This is followed by the setup of the demand model and the econometric 

specification. We then present the results, followed by concluding remarks.  

 

Data 

 

The main sources of data are the soybean and corn TraitTrak® datasets, two large, farm-level 

commercial datasets assembled by GfK Kynetec. GfK constructs the TraitTrak® data from 

annual surveys of randomly sampled farmers in the United States. The samples are developed 

to be representative at the crop reporting district (CRD) level, a multi-county area identified by 

the National Agricultural Statistics Service of the USDA (Fig. S1). Because this is the finest level 

at which the data are representative, as well as the level at which agro-climatic conditions 

roughly vary, we define a market as a CRD-year combination.19 This definition determines the 

choice-set for farmers, as well the level at which prices and market shares are computed.  

In the survey, farmers are questioned about the types, amounts, and cost of the seed 

they purchase. In particular, for each seed variety we observe whether it contains one or 

multiple GE traits (e.g., glyphosate tolerance (GT)), the parent company (e.g., Monsanto), and 

the brand (e.g., Asgrow). We define a variety (or product) as a crop-brand-GE trait combination 

(e.g., Asgrow-GT is a variety in our analysis).20 Combined with our market definition, this 

results in a total of 38,009 variety-market observations.  

The primary product level variables to be calculated are market shares and prices. 

Market shares are computed as the ratio of total acres grown (for a given variety) to the sum of 

all soybean and corn acres grown within the market. Following Goeree (2008) and Eizenberg 

                                                      
19 Corn and soybean varieties are bred to possess characteristics that match a particular agro-climatic 

region. For example, the more northern U.S. regions have shorter growing seasons, so seeds bred for 
those regions have shorter maturity time frames. This, combined with the fact that the data is 
representative at the CRD-level, made it an obvious first choice for our definition of a market. 

 
20 We actually observe the varietal number of each seed, which is at an even finer level than the brand 

level. Defining a variety at this level, however, would result in more than 10,000 varieties. 
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(2014), we construct prices for each variety in each market by dividing total sales by total acres 

planted.   

We also have data on the Chicago Mercantile Exchange soybean and corn futures prices, 

both obtained from www.quandl.com, as well data on the consumer price index (CPI), which 

was obtained from Quickstats on the USDA-NASS website. The soybean prices are the average 

futures prices in the month of January for delivery in November, and the corn prices are the 

average prices in January for delivery in September.  

The Corn and Soybean Seed Industries  

GE varieties commercialized so far include two families of traits: herbicide tolerance (HT) and 

insect resistance (IR). These traits are attractive to farmers because they address two of the most 

important sources of yield losses: weed pressure and insect damage. GE varieties were first 

introduced in the United States by Monsanto as Roundup Ready® soybeans in 1996. The 

Roundup Ready® trait confers tolerance to the effective and broad-spectrum herbicide 

glyphosate, permitting over the top applications after the soybean plants have emerged 

(henceforth, Roundup Ready soybeans will be referred to as glyphosate tolerant (GT) soybeans). 

In contrast to maize, where multiple GE traits have been commercialized and widely adopted, 

the GT trait has essentially been the only widely adopted transgenic trait in soybeans. The 

adoption of GT soybeans occurred rapidly, surpassing even the rate at which corn hybrids were 

adopted (Griliches 1957). By 2003, over 90% of land was planted to GT soybeans, and from then 

on adoption never fell below 90% (Figure. 1). The basis for such rapid and widespread adoption 

is primarily due to improved weed control and a reduction in management time (Qaim 2009; 

Barrows, Sexton and Zilberman 2014).  

 For maize, both GT and numerous IR traits have been widely adopted, either alone or 

stacked. IR traits use genes from Bacillus thuringiensis (Bt), a soil-dwelling bacterium known for 

its biological pesticide properties. Earlier Bt maize varieties were resistant only to the European 

corn borer (CB), first introduced in 1996, but Bt varieties resistant to rootworm (RW) were 

introduced subsequently in 2003 (GT corn was released in 1998). The attractiveness of Bt 
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varieties is that they increase expected yields and reduce yield volatility—in particular, yield 

losses are greatly reduced when pest pressure is high (Fernadez-Cornejo et al., 2014). The right 

panel of Figure 1 reports adoption rates for the various types of GE corn varieties. Note that 

“CB” and “GT”, as well as all of the other GE trait combinations in Figure 1, represent seeds 

that contain that exact configuration; i.e., with the exception of the green line, the adoption rates 

sum to one. 

As noted, in corn more than one trait can be inserted into a seed: these seeds are referred 

to as stacked seeds. Stacked seeds have been very prominent in the corn seed industry, 

especially in recent years. Though corn with just CB trait was initially the most widely adopted, 

by 2011, 70% of corn varieties had multiple GE traits. By that time, the only widely adopted 

variety with a single GE trait was GT corn at 18%, and GE corn varieties on the whole 

accounted for more than 90% of purchased seed. In our econometric analysis, we consider a set 

of seven mutually exclusive crop-trait configurations. For soybeans, there a two possibilities: GT 

and non-GT varieties. For corn, there are five: CB, GT, GT-CB, GT-CB-RW, and non-GE 

varieties. For use later on, denote an element of this set by κ .21 Note that in corn we also 

observe RW, CB-RW, and GT-RW, so in principle we could have three more crop-trait 

combinations. However, these varieties were very rarely adopted in our sample (around 1% of 

observations each), so we drop them from the analysis. 

 

 

 

 

 

                                                      
21 This is important for our analysis later on because in our econometric framework we use dummy 

variables for GE traits that are not mutually exclusive.   
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Figure 1. Soybean (left) and Corn (right) Adoption Rates (% of planted acres) 

 

 

 Figure 2. Soybean (left) and Corn (right) Seed Prices (nominal $/acre) 

 

We can get an idea of the degree to which farmers value GE traits by looking at their 

prices. Indeed, the fast adoption of GE varieties occurred even despite significant premiums 

charged relative to non-GE varieties (Figure 2). In both corn and soybeans, the premium 

charged for a single trait, whether it be the GT trait or the CB trait, averaged a bit over $9 (Table 
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1).  Having both the GT and CB traits in corn cost an average of $14.36 and to get all three traits, 

$28.33. Perhaps the starkest trend in prices was the sharp increase that begin 2007. Over the 

period 2007-2011, seed prices increased by more than 50% in soybeans and 70% in corn.    

Table 1. Average GE Variety Premiums (difference relative to non-GE varieties, nominal $/acre) 

  Soy GT Corn GT Corn CB Corn GT-CB Corn GT-CB-RW 
Premium 9.55 9.81 9.35 14.36 28.33 

 

 These trends cannot be fully appreciated without looking at three other major related 

factors: glyphosate prices, crop output prices, and firm market shares. Each of these variables 

may not only in part explaining seed prices, but they also clearly indicate the need for time-

varying marginal benefits for GE traits, as well as a statistical framework that accounts for the 

presence of imperfect competition. 

 Figure 3 documents the trends in glyphosate and crop output prices from 1998-2011. The 

price of glyphosate is important because variations in its magnitude lead to variations in the 

benefits associated with GT varieties: when glyphosate prices are lower, for a given seed price, 

the benefits associated with GT varieties rise. In 2000, Monsanto’s patent ended, leading to a 

steady decline in the price per pound (with the exception of 2007-2008). From 1998-2011, prices 

fell by roughly 70%. This motivates our choice, discussed above, to permit the marginal benefits 

associated with GT varieties to be different post-2000.   

 The other major important related event was the sharp increase in crop output prices 

that began in 2007. In just two years – 2007 and 2008 – corn and soybean prices doubled. The 

effect of such large shocks to output prices is to raise farmers demand for the required inputs, 

and so it is unsurprising that seed prices went up so much. What is interesting is that in the 

glyphosate market, which can be largely described as competitive by 2007, the shock to prices 

was not persistent: eventually supply caught up and glyphosate prices came back down. By 

contrast, seed prices did not come back down, raising the question of how large a role imperfect 

competition plays in the industry.  
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Since the introduction of GE crops there have been major changes to organization of the 

seed industry. From 1996-2011, the four-firm concentration ratio increased from 35.7% to 71.7% 

in soybeans and 61.6% to 79.9% in corn. To understand these changes some background on each 

industry is necessary. 

 

 

  Figure 3. Trends in nominal Glyphosate and Expected Crop Output Prices, 1998-2011 

 

Before the introduction of GT soybeans, the soybean seed market could be characterized 

as essentially competitive. Commercial soybeans have the property that they reproduce “true to 

type”; i.e., if a farmer plants the yield from a given soybean seed it will grow to be an exact 

replica of its parent (note that is not the case in maize). As a result, the ability to save seed – 

using your own yield for next season’s seed – or purchase seed locally from last year’s yield (so-

called “bin run” seed), created a competitive fringe that significantly limited the ability of seed 

producers to charge a price in excess of marginal cost. Whatever difference there was between 

the cost of seed for planting and the cost of soybeans on the output market, most of it could be 

imputed to cleaning, conditioning, and certification costs (Fernandez-Cornejo et al. 2004).  

 

0

2

4

6

8

10

12

14

0

1

2

3

4

5

6

7

19
98

19
99

20
00

20
01

20
02

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

Glyphosate ($/kg) (left axis)
Maize futures  ($/bu) (left axis)
Soy futures ($/bu) (right axis)



www.manaraa.com

111 

 

 

Table 2. Two Year Average Market Shares for the U.S. Soybean Industry, 1996-2011 

Year 
1996-
1997 

1998-
1999 

2000-
2001 

2002-
2003 

2004-
2005 

2006-
2007 

2008-
2009 

2010-
2011 

Monsanto1 1.8 19.5 21.2 21.2 20.4 25.5 28.9 27.1 
Dupont/Pioneer2 15.3 14.7 17.8 20.7 23.3 25.3 26.9 31.5 
Syngenta3  2.1 4.7 9.3 11.5 10.6 10.3 
Dow Agro 1.1 2.0 1.8 1.6 1.5 1.6 2.2 
AgReliant4   0.7 1.5 1.6 2.0 1.7 1.9 
Beck's  0.4 0.7 1.0 1.2 1.2 1.4 1.5 2.7 
Croplan 1.0 1.1 1.7 3.0 2.9 3.6 3.1 2.6 
Stine 3.1 3.3 3.4 2.7 2.3 2.2 2.5 2.0 
Pub./Saved5 27.8 19.6 15.5 7.6 3.5 1.8 1.8 1.6 
CR4 35.7 42.4 46.0 50.5 55.8 65.9 69.5 71.7 
HHI 0.043 0.067 0.083 0.096 0.109 0.146 0.170 0.187 
1Monsanto acquired DeKalb in 1997 and  Asgrow in 1998. 
2Pioneer was fully purchased by Dupont in 1999. 
3Novartis and Astra-Zeneca combined to form Syngenta in 2000.  
4AgReliant was formed in 2000 by a joint venture between Limagrain and KWS.  
5Pub./Saved seed includes all acres that were planted with saved or public seed. 
Data Source: GfK Kynetec. 
 
 

Table 3. Two Year Average Market Shares for the U.S. Corn Industry, 1995-2011 

Company 
1995-
1997 

1998-
1999 

2000-
2001 

2002-
2003 

2004-
2005 

2006-
2007 

2008-
2009 

2010-
2011 

Monsanto1  8.4 10.7 11.8 15.6 26.9 34.5 33.8 
Dupont/Pioneer2 38.6 36.2 36.7 34.7 32.4 30.1 30.1 32.4 
Syngenta3   3.2 6.2 9.6 11.0 7.7 7.3 
Dow Agro4  1.8 5.0 5.1 3.8 3.3 3.6 4.4 
AgReliant5   1.6 3.5 3.8 5.7 5.8 6.4 
Beck's 0.3 0.8 1.0 1.0 1.1 1.4 1.4 1.5 
Croplan 0.6 0.6 1.2 2.3 1.7 2.4 2.2 1.8 
CR4 61.6 58.7 57.2 57.9 61.3 73.6 78.1 79.9 
HHI 0.175 0.156 0.158 0.149 0.144 0.181 0.221 0.232 
1Monsanto acquired DeKalb in 1997 and  Asgrow in 1998. 
2Pioneer was fully purchased by Dupont in 1999. 
3Novartis and Astra-Zeneca combined to form Syngenta in 2000.  
5AgReliant was formed in 2000 by a joint venture between Limagrain and KWS. 
Data Source: GfK Kynetec. 
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With GT soybeans, however, growers sign contracts preventing them from saving seed. 

Moreover, because the GT trait is covered by an enforceable utility patent, growers cannot 

purchase seed from their local bin off-contract and then indefinitely replant part of their yield. 

This is arguably the primary driving force behind the doubling of concentration levels in the 

soybean seed industry.  

By contrast, commercial seed corn varieties are hybrids, which means that if a farmer 

plants his own yield in the following season, the results will be significantly less robust and 

uniform. As a result, there is a natural barrier to competition in corn seed, which has historically 

permitted a more concentrated industry. This is what accounts for the much larger CR4 in corn 

compared to soybeans in 1996. Nonetheless, the widespread adoption of GE corn varieties has 

led to even further concentration.  

For our purposes, there are two main takeaways from the market share data. The first is 

that in both corn and soybean seed markets there is imperfect competition. The implication for 

our demand model is that, because prices are set by firms, they are likely endogenous. Our 

solution to this is to use instrumental variables (discussed below). The second is that the 

industry was considerably more concentrated later on, which begs the question of whether 

firms captures a larger share of the rents. In particular, we are interested in how the GE trait 

premiums charged by seed firms over time are related to the respective marginal benefits for 

farmers.     

 

Demand Model 

 

The demand for corn and soybean varieties is modeled using a random-coefficient-logit 

specification (Nevo 2001). Following Train and Winston (2007), we do not include a general 

outside good in the model. As they note, there are certain limitations associated with including 

a general outside good. One problem is that the way in which “utility” (per-acre profit, in our 

case) is typically specified for the outside good is not structural: because the general outside 
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good encompasses many possible options, it is hard or not meaningful to specify it as 

depending on various attributes such as price. As a result, its inclusion may produce bias in the 

coefficient estimates. An additional problem with having a general outside good is that it 

precludes the inclusion of demographic explanatory variables for which the population 

distribution is unknown. For example, in our case we observe a variable for farm-size in our 

sample of corn and soybean seed buyers, but we do not observe the distribution of farm-size for 

farmers that chose not to plant corn or soybeans. Without additional outside information about 

this distribution, any estimation that solely relied on the farm-size distribution of the farmers in 

our sample would likely produce biased coefficients. 

 The primary limitation of not including an outside good is that if growers substitute 

readily to something else besides corn and soybeans, then our price coefficients will be biased 

towards zero. Since our analysis is skewed towards corn and soybean farmers in the central 

corn belt, we believe there is little to be lost by assuming that, once a farmer has decided to 

plant corn or soybeans, they will always choose one or the other. One way to assess the 

importance of this assumption is to ask how extreme conditions would need to be for farmers to 

choose something else besides corn or soybeans. In our view, there would need to fairly 

dramatic changes for farmers to re-consider an option different from corn or soybeans. Overall, 

we believe the downsides associated with including a general outside option outweigh the 

benefits. 

 Concerning the model, we denote a market (CRD-year combination) by m . In each 

market there are 0,1,..., mj J=  available varieties (crop-brand-trait combination) and 1,..., mi I=  

plots, where a plot is synonymous with a choice situation (note that growers may have multiple 

plots). For each plot, a farmer chooses the seed variety that maximizes the following per-acre 

return objective function:22 

                                                      
22 Our framing of the problem as one in which a grower makes a discrete choice on each plot is in 

many respects similar to the framework developed in Caswell and Zilberman (1985). 
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(1) 

ijmjm

ijm jm ijm ijm ijmjm jmz wp x
ψδ

σ µεπ β ξ φ ′+ +′ ′= − + +


    

where jmz  is a 1K ×  vector of seed characteristics, jmp  is the seed cost per acre of variety j  in 

market m , and jmξ  is a product-market specific demand shock that is unobserved by the 

econometrician. The latter  represents factors such as how well a particular market is matched 

to a given seed variety. For the purposes of exposition, the mean return associated with variety 

j   in market m  is denoted by jmδ .  The remaining variables capture the portion of returns that 

vary by plot. The vector ijmx   contains farmer characteristics, e.g., farm-size, interacted with seed 

characteristics. By including these variables, we aim to capture how farmer characteristics 

impact the mean valuation of each of the seed attributes (in particular, the GE traits). 

Unobserved heterogeneity is captured by ijmw , which contains the interaction of seed 

characteristics and mean-zero normally distributed error terms. The σ  vector of parameters 

thus captures whether there is unobserved heterogeneity in preferences for the different seed 

attributes. In particular, they represent the variance of the normally distributed errors. The term

ijtε  is an IID Type-I Extreme Value residual; it captures unobserved plot specific factors. The 

parameter µ  characterizes the variance of ijtε  and is typically referred to as the scale parameter 

(Train 2009). This parameter plays an important role in our analysis. As we show below, the 

estimated parameter on the price variable is the inverse of the scale parameter. Anderson, de 

Palma, and Thisse (1992) interpret µ  as a measure of taste heterogeneity and Caswell and 

Zilberman (1985) call its inverse the “water cost-saving” coefficient in their analysis of irrigation 

technologies. We use this parameter to obtain WTP estimates for the various GE traits.  

 As with all discrete choice models, only differences in returns matter, so the return to 

some variety needs to be normalized (since we are not including a general outside good). We 

index this variety by 0j =  and call it the reference good. We use Dupont-Pioneer non-GE corn 

varieties as the reference good since they are observed in the largest number of markets. 

Operationally, this means subtracting the observed values of the attributes for the reference 

good from the values of each of the inside goods. For example, in market m  the price of variety 
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j  is 0jm jm mp p p= −  , where jmp  and 0mp   are the observed average seed costs of variety j  and 

the reference good, respectively.  

 Let iν  denoted the vector of zero-mean normally distributed error terms for a particular 

plot. Conditional on a realization of iv , the probability that variety j  is chosen is given by the 

logit expression:  

(2) 
( )

( )( )
1

jt ijm ijm

kt ikm ikm

x w

ijm x w
k

eL v
e

δ φ σ µ

δ φ σ µ

′ ′+ +

′ ′+ +=
+∑

 

where the inverse of µ  now scales the per acre returns in the exponential terms. The 

unconditional probability is given by the integral over all possible realizations of iν : 

(3) ( ) ( )ijt ijt i i iP L f dν ν ν= ∫ . 

Because this expression has no closed-form, the standard practice is to approximate it using 

simulation. For each individual, we compute: 

(4) 
1

1 ( )
R

ijt ijt r
r

P L
R

ν
=

= ∑   

where R  is the total number of draws. In this application we elect to estimate the simpler logit 

model.23  This is equivalent to assuming that 0ijtψ = . This collapses the predicted probabilities 

into a simple expression, which can be algebraically manipulated into the basic linear logit 

equation derived in Berry (1994):  

(5) 0ln( ) ln( )jm m jm jm jms s z pβ α ξ′− = − +    

                                                      
23 Future work will include an extension of the econometric framework to accommodate both 

observed and unobserved heterogeneity. 
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where 1α µ= , β β µ= , jm jmξ ξ µ= ; and jms  and 0ms  are the shares of variety j  and the 

reference good, respectively, in market m . As noted, α  is the parameter for calculating 

farmers’ WTP: dividing β  by α  gives the un-scaled coefficient vector β .  

Variables  

The main variables included in the vector jmz  include brand fixed effects and sub-

period-specific dummy variables for each of the possible GE trait configurations. Brand-fixed 

effects are included to control for unobserved quality differences in brands. For example, 

Pioneer varieties are typically perceived as being of higher quality than other brands; to the 

extent that quality is correlated with price, their exclusion would result in bias. For the GE traits 

we include a total of five different types of dummies, denoted by dτ , where τ ∈Ω :  

(6) {soy-GT, corn-GT, corn-CB, corn-GT-CB, corn-GT-CB-RW}Ω =   

For ease of interpretation, these dummy variables merely indicate the presence of a certain trait 

combination and thus are not mutually exclusive. For example, the dummy variables for corn 

varieties with the double stack of GT and CB would take on the values of: 

corn-GT corn-CB corn-GT-CB1, 1, 1d d d= = =  

with all other dummies equal to zero. Each possible combination of dummies corresponds to an 

element κ , noted earlier. The primary reason we specify it this way is that the coefficient on 

corn-GT-CBd  now conveys whether returns are sub-additive in the GT and CB traits. In keeping 

with the previous discussion, we estimate these dummies separately for each of the three sub-

periods: (i) 1996-2000, (ii) 2001-2006, and (iii) 2007-2011.  

 In certain specifications, we also include a soybean dummy variable, annual soybean 

and corn futures prices, crop-year specific dummy variables and crop-year specific CRD effects. 

The soybean dummy variable controls for time-invariant unobserved differences between 

soybean and corn seed. The futures prices and crop-year specific dummy variables are included 

to control for crop-specific differences in the returns over time. Crop-year specific CRD effects 
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control for unobserved differences in how well particular regions are matched to each of the 

two crops.  

Instruments 

Because seed firms observe jmξ , prices are likely correlated with jmξ  (Trajtenberg 1989). 

For example, if jmξ  captures the degree to which a market matches variety j , then seed firms 

may charge higher prices for varieties that are well-matched to a particular region.24 As a result, 

the OLS estimator for α  will be biased towards zero. The solution to this problem is to use 

instrumental variables for the price variable. Following Berry et al. (1995) we use the sums of 

the characteristics in competing varieties as our instruments. Since the GE traits are the main 

characteristics that vary over seed varieties, this amounts to counting up the unique number of 

GE varieties. Specifically, we calculate four sets of sums. They are the total number of 

competing varieties with a particular trait configuration by: (i) market, (ii) company, (iii) crop, 

and (iv) company and crop. With seven possible crop-trait configurations, there are twenty-

eight total instrumental variables.    

 

Results 

 

Basic summary statistics for the main included variables are provided in table 4. During 

estimation, all prices are deflated by the CPI. Average seed costs over the entire sample were 

$36.47 per acre, and average soybean and corn futures prices were $7.25 and $$3.20 per bushel, 

respectively. Soybean varieties accounted for 43% of the sample, with GT varieties accounting 

for 72% of soybean varieties. In corn, 49% of varieties were conventional, 36% contained the CB 

trait, 37% had the GT trait, 22% had the GT-CB combination, and 13% had the GT-CB-RW 

combination.  

 

                                                      
24 For example, seeds with longer maturity time-frames will be less demanded in more northern 

regions, and so may also command a lower price (relative to the price commanded in more southern 
regions). Evidence in Stiegert et al. (2011) supports this presence of spatial price variation. 
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Table 4. Descriptive statistics for selected variables in the estimated model 

Variable Mean Std. Dev. Min Max 
Seed Cost ($/acre) 36.47 18.11 1.11 130.27 
Soybean Futures ($/bu) 7.25 2.52 4.48 13.13 
Corn Futures ($/bu) 3.20 1.04 2.31 5.68 
Dummy Variables 
Soy 0.43 0.49 0.00 1.00 
GT 0.71 0.46 0.00 1.00 
Corn 0.57 0.49 0.00 1.00 
non-GE 0.49 0.50 0.00 1.00 
CB 0.36 0.48 0.00 1.00 
GT 0.37 0.48 0.00 1.00 
GT-CB 0.22 0.41 0.00 1.00 
GT-CB-RW 0.13 0.34 0.00 1.00 

 

 We present coefficient estimates for four different specifications. All specifications 

included brand fixed effects; column (2) adds soybean and corn futures prices, column (3) 

replaces futures prices with crop-specific time effects, and column (4) adds crop-specific CRD 

effects. The results generally accord with expectations. The coefficient on seed price is negative 

and significant in all four cases with average own price elasticities ranging from -1.95 (column 

3) to -3.34 (column 2). The coefficient estimates for the futures prices are both positive, 

indicating that profit per acre for both corn and soybean varieties increases when corn and 

soybean futures prices rise. 

 The most interesting results are for the GE coefficient estimates. For the basic GE effects 

– soy-GT, corn-GT, corn-CB – the estimated coefficients are positive and significant in most sub-

periods. The exception is the negative coefficient in the first sub-period for corn-GT varieties, 

which suggests poor availability of good hybrids and/or lack of awareness of the GT trait. This 

contrasts with GT soybeans, for which there was a positive coefficient in all periods. This is 

consistent with the lack of alternative herbicide options in soybeans (relative to corn). In most 

cases, the GT-CB coefficients are negative and significant. This means that the return to varieties 

with both the GT and CB traits is less than the sum of their return; i.e., profits are sub-additive 

in the GT-CB stack. This is consistent with the finding of sub-additive prices in Shi et al. (2012). 
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The corn GT-CB-RW is positive and significant in the final sub-period, indicating that growers 

value the RW trait. Note that because we do not estimate dummies for the RW trait on its own, 

we cannot say what its value is in isolation.    

 In all specifications there is a clear upward trend in growers’ willingness to pay for GE 

traits. As discussed previously, this is potentially indicative of learning effects, better GE 

varieties, falling glyphosate prices, and rising output prices. The increase in the coefficients is 

particularly large for corn GE traits in the final sub-period, which is consistent with a perceived 

yield effect: the sharp increase in corn output prices raised the differential monetary gain to GE 

varieties.  By contrast, the increase in the soy GT coefficient is largest from the first sub-period 

to the second sub-period and more muted from the second sub-period to the final. Overall, this 

is unsurprising given the observed adoption patterns. The relative profitability of the various 

GE traits is pinned down by the shares of the varieties that contain them (controlling for prices, 

brand effects, etc.). 

Willingness-to-pay for GE traits 

While informative, the coefficient estimates do not convey the monetary magnitude of 

the various GE traits. We calculate willingness-to-pay (WTP) estimates for the various GE trait 

configurations using the coefficient estimates from column 4 in table 5. For a given trait 

configuration, κ , the WTP is given by the ratio of the sum of the estimated GE coefficients to 

the price coefficient:  

(7) 
1WTP dκ τ τ

τ

β
α ∈Ω

= ∑    

where τβ  is the coefficient on the crop-trait combination τ . For the calculations, we use column 

4 because of its superior fit and the fact that, through its additional controls, it is the most robust 

to omitted variables. Nonetheless, the WTP estimates we would obtain from the other 

specifications are quite similar.  
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 WTP estimates for each of the possible GE-trait combinations are provided in table 6. 

Most of the estimates are positive and tightly estimated. All of the estimates are generally 

reasonable and in line with what might be expected given knowledge of seed prices and the 

observed adoption patterns by farmers. Marginal benefits range from as high as $41.88 in the 

2007-2011 sub-period for GT-CB-RW seed corn to as low as -$3.50 for GT-only corn varieties in 

the first sub-period. Notably, the WTP for GT soybean varieties is significant and positive in all 

sub-periods, reaching a high of $19.34 in the 2007-2011 period.  As was the case for coefficient 

estimates, there is a clear and significant upward time-path.  

To provide additional context for the estimates, in particular for their changes over time, 

table 6 also contains statistics for the average premium – the difference between the average 

price of non-GE varieties and the average price for the respective GE varieties – charged by seed 

firms, as well as the difference between those premiums and farmers’ WTP. What’s particularly 

interesting is that the average premiums charged by seed firms do not actually change as much 

as one might expect. In fact, the average premium charged for GT varieties in the 2007-2011 

period was less than in both previous sub-periods (recall that all prices are deflated by the CPI; 

in nominal terms, the premiums are all higher in later periods). Under certain assumptions, this 

implies that growers increasingly benefited from GE varieties over time.25 In the 2007-2011 

period, the share of differential marginal benefits captured by seed firms ranged from 36% for 

GT soybeans to 63% for CB corn. In the other cases, the ratio was between 50% and 60%. We 

interpret this as indicating that, although seed firms enjoyed significant market power, farmers 

gained significantly from GE varieties, and, perhaps counterintuitively, the majority of those 

gains occurred during the sub-period in which seed costs rose the most.  

                                                      
25 This statement is premised on the assumption that conventional seed prices would have been the 

same in the counterfactual where GE varieties did not exist. This is an admittedly strong assumption, 
particularly given the presence of imperfect competition. To test the accuracy of this conclusion, future 
work will need to combine the demand side with the supply side in order to simulate what non-GE prices 
would have been in the absence of GE varieties.  
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Table 5. Demand model 2SLS Regression Results (dependent variable is 0ln( ) ln( )jm ms s− ) 
Variable (1) (2) (3) (4) 
Price ($/acre) -0.0939*** -0.0949*** -0.0555*** -0.0671*** 
 (0.0063) (0.0064) (0.0069) (0.0089) 
Soy Dummy -0.9025*** -0.7320***   
 (0.0467) (0.0929)   
Soy Futures ($/bu)  0.2011***   
  (0.0222)   
Corn Futures ($/bu)  0.5356***   
  (0.0750)   
Soy GT Effects 
1996-2000 0.9275*** 0.9512*** 0.5522*** 0.6207*** 
 (0.0629) (0.0624) (0.0665) (0.0787) 
2001-2006 1.3404*** 1.3543*** 1.1136*** 1.1525*** 
 (0.0502) (0.0478) (0.0631) (0.0746) 
2007-2011 2.2634*** 2.3724*** 1.2444*** 1.2970*** 
 (0.0353) (0.0538) (0.0868) (0.0965) 
Corn GT Effects 
1996-2000 -0.1006 -0.0949 -0.3040*** -0.2348* 
 (0.0976) (0.0978) (0.0914) (0.0945) 
2001-2006 0.5031*** 0.5089*** 0.2739*** 0.3551*** 
 (0.0509) (0.0512) (0.0517) (0.0612) 
2007-2011 1.8428*** 1.8511*** 1.5415*** 1.6385*** 
 (0.0608) (0.0613) (0.0631) (0.0771) 
Corn CB Effects 
1996-2000 0.3327*** 0.3409*** 0.0523 0.1439 
 (0.0629) (0.0632) (0.0637) (0.0749) 
2001-2006 0.5901*** 0.5962*** 0.3398*** 0.4221*** 
 (0.0508) (0.0512) (0.0526) (0.0635) 
2007-2011 1.0864*** 1.0909*** 0.8876*** 0.9534*** 
 (0.0583) (0.0586) (0.0568) (0.0630) 
Corn GT-CB Effects 
1996-2000 0.1750 0.1678 0.3127 0.2709 
 (0.3940) (0.3946) (0.3600) (0.3532) 
2001-2006 -0.2962*** -0.2993*** -0.1494* -0.2019** 
 (0.0640) (0.0642) (0.0602) (0.0630) 
2007-2011 -0.8863*** -0.8882*** -0.7992*** -0.8321*** 
 (0.0700) (0.0701) (0.0645) (0.0645) 
Corn GT-CB-RW Effects 
2001-2006 0.5151*** 0.5233*** 0.2412* 0.3169** 
 (0.1245) (0.1249) (0.1169) (0.1221) 
2007-2011 1.2689*** 1.2780*** 0.9609*** 1.0489*** 
 (0.0692) (0.0696) (0.0701) (0.0830) 
Fixed Effects Brand Brand Brand, Year-Crop Brand, Year-Crop, 

CRD-Crop 
N 38,009 38,009 38,009 38,009 
R2 0.156 0.154 0.297 0.325 

Notes: Standard errors are in parentheses. * p < 0.05, ** p < 0.01, *** p < 0.001
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Table 6. Willingness to Pay (WTP) for GE Seed Varieties ($/acre) 

  WTP Estimate Average Premium Difference Ratio 
Soy GT      
1996-2000 9.25*** 8.66 0.59 94% 
 (0.53)    
2001-2006 17.18*** 7.76 9.43 45% 
 (1.42)    
2007-2011 19.34*** 6.98 12.35 36% 
 (1.87)    
Corn GT Only     
1996-2000 -3.50* 5.68 -9.18 -162% 
 (1.69)    
2001-2006 5.29*** 4.99 0.30 94% 
 (0.46)    
2007-2011 24.43*** 11.86 12.57 51% 
 (2.23)    
Corn CB Only     
1996-2000 2.15* 8.38 -6.23 391% 
 (0.88)    
2001-2006 6.29*** 7.13 -0.84 113% 
 (0.39)    
2007-2011 14.22*** 5.21 9.01 63% 
 (1.36)    
Corn GT-CB     
1996-2000 2.68 9.65 -6.97 360% 
 (5.14)    
2001-2006 8.58*** 8.94 -0.37 104% 
 (0.58)    
2007-2011 26.24*** 12.80 13.43 51% 
 (2.11)    
Corn GT-CB-RW     
2001-2006 13.30*** 17.30 -4.00 130% 
 (1.66)    
2007-2011 41.88*** 25.04 16.83 60% 
  (1.96)    

Notes: WTP estimates are computed using the estimated coefficients from column 4 of Table 5. 

Each estimate is the ratio of the respective GE total effect to the estimated Price coefficient. All 

prices are deflated by the CPI. * p < 0.05, ** p < 0.01, *** p < 0.001 
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Conclusion 

 

In this paper we develop and estimate a structural discrete choice model of corn and 

soybean seed demand for the period 1996-2011. The model is specified and estimated to take 

into account imperfect competition in the seed industries. We examine farmers’ WTP across two 

important events: the expiration of Monsanto’s glyphosate patent and the sharp increase in 

commodity prices that began in 2007. We find that farmers were almost always willing to pay a 

significant premium for GE varieties and the extent of that willingness increased significantly 

over time. We attribute this to learning effects, the gradual release of a wider array and better 

yielding GE varieties, decreasing glyphosate prices, and increase in output prices. The increase 

in corn and soybean outprices seems to have had a particularly large effect on the marginal 

benefits of corn GE varieties, suggesting a strong perceived yield premium. In addition, we find 

that the WTP estimates for stacked GE varieties are sub-additive, a finding consistent with Shi 

et al. (2012).  

 We also compare farmers’ WTP for GE varieties to the average premiums charged by 

seed firms. Interestingly, we find that the WTP estimates for GE varieties exceeded average 

premiums by the most in the final sub-period, the period during which seed prices increased 

sharply. Why might this be? One possibility is that there’s a lag or institutional stickiness to 

seed prices, so that when corn and soybean futures prices suddenly go up, and farmers are 

willing to pay substantially more for the better varieties, seed firms don’t immediately fully 

adjust.  

 It is also important to note the limitations of our findings. One limitation is that we do 

not estimate firms’ marginal costs, so we cannot ascertain the exact distribution of ex post GE 

returns between seed firms and farmers. Nor do we simulate the counterfactual in which GE 

varieties are not available, which would permit us to ascertain the extent to which non-GE 

prices have been impacted by GE varieties (through the induced re-structuring of the seed 

industries). Both of these extensions constitute important avenues for future research.       
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Fig. S1. Crop Reporting Districts (CRD), National Agricultural Statistics Service,  

U.S. Department of Agriculture. 
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